|Table of Contents|

Reliability analysis under Marshall-Olkin extended exponential distribution based on generalized progressively hybrid censored scheme(PDF)


Research Field:
Publishing date:


Reliability analysis under Marshall-Olkin extended exponential distribution based on generalized progressively hybrid censored scheme
 XIAO Jin’an HE XingshiWANG Yan
 School of Science, Xi’an Polytechnic University, Xi’an 710048,China
 Marshall-Olkin extended exponential distribution generalized progressively hybrid censoring Metropolis-Hastings sampling algorithm parameters estimation
O 213.2
In order to study the reliability index of Marshall-Olkin extended exponential distribution, based on the generalized progressively hybrid censored model, the unknown parameters of the distribution are estimated by classical estimation and Bayesian estimation methods.By numerical iteration method and asymptotic normal theory,the maximum likelihood estimates of the unknown parameters are given. Under the condition that the prior distribution is gamma distribution, the Bayesian estimator and the maximum posterior density confidence interval of unknown parameters are obtained by using Metropolis-Hastings sampling algorithm. The numerical simulation results show that the mean square error and interval length of Bayesian estimator are better than those of classical estimator.


[1] 茆诗松,汤银才,王玲玲.可靠性统计[M].北京:高等教育出版社,2008:97-101. MAO S S,TANG Y C,WANG L L.Reliability statistics[M].Beijing:Higher Education Press,2008:97-101.(in Chinese)
[2] CHILDS A,CHANDRASEKAR B,BALAKRISHNAN N.Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes[M]//Statistical Models and Methods for Biomedical and Technical Systems.Boston:Birkhäuser Boston,2008:319-330.
[3] CHO Y,SUN H,LEE K.Exact likelihood inference for an exponential parameter under generalized progressive hybrid censoring scheme[J].Statist Methodol,2015,23:18-34.
[4] WANG L.Inference for weibull competing risks data under generalized progressive hybrid censoring[J].IEEE Transaction on Retiablity,2018,67(3):998-1007.
[5] 郝晓彤,闫在在.广义逐步混合截尾下Fréchet分布的参数估计[J].数学的实践与认识,2018,48(12):184-192. HAO X T,YAN Z Z.Parameter estimation under Fréchet distribution based on generalized progressive hybrid censored scheme[J].Math Pract Theory,2018,48(12):184-192.(in Chinese)
[6] MARSHALL A.A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families[J].Biometrika,1997,84(3):641-652.
[7] SINGH S K,ABHIMANYU S,YADAV A S,et al.Marshall-Olkin extended exponential distribution:Different method of estimations[J].J Adv Comput,2016,5(1):12-28.
[8] YADAV A S,SINGH S K,SINGH U.Bayes estimator of the parameter and reliability function of Marshall-Olkin extended exponential distribution using hybrid type-II censored data[J].J Stat Manag Syst,2016,19(3):325-344.
[9] SANKU D,MAZEN N,RAJ KAMAL M.Estimation and prediction of Marshall-Olkin extended exponential distribution under progressively type-II censored data[J].Journal of Statistical Computation and Simulation,2018,88(12):2287-2308.
[10] 王燕,贺兴时,王慧敏.逐步Ⅱ型截尾竞争失效产品的Marshall-Olkin扩展指数分布统计分析[J].西安工业大学学报,2016,36(7):517-521. WANG Y,HE X Y,WANG H M.Statistical analysis of competing failure models with Mashrall-Olkin extended expon
ential distribution under progressive type-Ⅱcensored[J].Journal of Xi’an Technological University,2016,36(7):517-521.(in Chinese)
[11] RISTIC M M,KUNDU D.Marshall-Olkin generalized exponential distribution[J].Metron,2015,73(3):317-333.
[12] SINGH S K,SINGH U,YADAV A S.Bayesian estimation of Marshall-Olkin extended exponential parameters under various approximation techniques[J].Hacettepe Journal of Mathematics and Statistics,2014,43(2):341-354.
[13] TORABI H,BAGHERI F L,MAHMOUDI E.Estimation of parameters for the Marshall-Olkin generalized exponential distribution based on complete data[J].Mathematics and Computers in Simulation,2018,146:177-185.
[14] HAGHIGHI F.Optimal design of accelerated life tests for an extension of the exponential distribution[J].Reliability Engineering & System Safety,2014,131:251-256.
[15] BALAKRISHNAN N,LING M H.Best constant-stress accelerated life-test plans with multiple stress factors for one-shot device testing under a weibull distribution[J].IEEE Transactions on Reliability,2014,63(4):944-952.
[16] CAI J,SHI Y,LIU B.Inference for a series system with dependent masked data under progressive interval censoring[J].Journal of Applied Statistics,2017,44(1):3-15.
[17] GEWEKE J,TANIZAKI H.Bayesian estimation of state-space models using the Metropolis Hastings algorithm within Gibbs sampling[J].Computational Statistics & Data Analysis,2001,37(2):151-170.
[18] DEY K K,BHATTACHARYA S.A brief review of optimal scaling of the main MCMC approaches and optimal scaling of additive TMCMC under non-regular cases[J].Brazilian Journal of Probability and Statistics,2019,33(2):222-266.
[19] BALAKRISHNAN N,SANDHU R A.A simple simulational algorithm for generating progressive type-II censored samples[J].The American Statistician,1995,49(2):229-230.


Last Update: 2019-10-07