|Table of Contents|

Evaluation of fabric pilling based on relative total
variation model and MSER
(PDF)

《纺织高校基础科学学报》[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2019年03期
Page:
282-288
Research Field:
服装智能制造
Publishing date:

Info

Title:
Evaluation of fabric pilling based on relative total
variation model and MSER
Author(s):
DU Lintao1 LI Pengfei1 GU De2
1.School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China; 2.Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education,Jiangnan University, Wuxi 214122, Jiangsu, China
Keywords:
fabric pilling relative total variation model MSER pilling segmentation pilling grades evaluation
PACS:
TS 101.9
DOI:
10.13338/j.issn.1006-8341.2019.03.009
Abstract:
Aiming at the problems of being subjective and inefficient in evaluation of fabric pilling grades, an evaluation method of fabric pilling grades based on relative total variation model and MSER(Maximally Stable Extremal Regions)is proposed. Firstly, the fabric pilling images are pretreated to eliminate the influence of uneven illumination and enhance the information of pilling. Secondly, the relative total variation model is used to suppress the texture information of the pilling images, MSER is used to segment the pilling regions, and then morphological operation is used to process the regions. Finally, the ratio of the total area of the pills to the image area is calculated as the pilling grades evaluation parameters, and the evaluation standard is established to realize the objective evaluation of the grades. The experimental results show that this method can effectively evaluate the fabric pilling grades, which can meet the actual industrial needs.

References:


[1] 高卫东.基于图像分析的织物起毛起球自动评级研究[D].上海:东华大学,2011. GAO W D.Research on automatic grading of fabric pilling based on image analysis[D].Shanghai:Donghua University,2011.(in Chinese)
[2] KONDA A,XIN L C,TAKADERA M,et al.Evaluation of pilling by computer image analysis[J].Journal of the Textile Machinery Society of Japan,1990,36(3):96-107.
[3] XU B.Instrumental evaluation of fabric pilling[J].The Journal of The Textile Institute,1997,88(4):488-500.
[4] 周圆圆,潘如如,高卫东,等.基于标准样照与图像分析的织物起毛起球评等方法[J].纺织学报,2010,31(10):29-33. ZHOU Y Y,PAN R R,GAO W D,et al.Evaluation of fabric pilling based on standard images and image analysis[J].Journal of Textile Research,2010,31(10):29-33.(in Chinese)
[5] CHEN X,XU Z B,LI L Q.Detecting pills of fabric image based on multi-scale matched filtering[J].Textile Research Journal,2009,79(15):1389-1395.
[6] DENG Z,WANG L,WANG X.An integrated method of feature extraction and objective evaluation of fabric pilling[J].Journal of the Textile Institute,2010,27(9):1-13.
[7] 汪亚明,崔新辉,韩永华,等.基于小波变换及Gabor滤波的起毛起球图像分割[J].丝绸,2016,53(3):37-40. WANG Y M,CUI X H,HAN Y H,et al.Fabric pilling image segmentation based on wavelet transform and Gabor filter[J].Journal of Silk,2016,53(3):37-40.(in Chinese)
[8] 薛婷婷,刘秀平,张凯兵,等.基于学习的Gabor滤波器多样式布匹瑕疵检测[J].西安工程大学学报,2017,31(6):775-780. XUE T T,LIU X P,ZHANG K B,et al.Learning-based Gabor filter in multi-style fabric defect detection[J].Journal of Xi’an Polytechnic University,2017,31(6):775-780.(in Chinese)
[9] 魏炜.基于自适应双正交小波的织物疵点边缘检测[J].西安工程大学学报,2013,27(3):369-374. WEI W.Edge detection of fabric defect based on an adaptive bi-orthogonal wavelet [J].Journal of Xi’an Polytechnic University,2013,27(3):369-374.(in Chinese)
[10] 李静,王新民.基于B样条小波的零件缺陷图像边缘检测[J].纺织高校基础科学学报,2011,24(2):299-302. LI J,WANG X M.Defect imaging edge inspection based on B-spline wavelet[J].Basic Sciences Journal of Textile Universities,2011,24(2):299-302.(in Chinese)
[11] 赵喜林.基于相对总差和水平集的织物毛球分割[J].浙江工贸职业技术学院学报,2017,17(4):49-52. ZHAO X L.Fabric pilling segmentation based on relative total variation and level set[J].Journal of Zhejiang Industry & Trade Polytechnic,2017,17(4):49-52.(in Chinese)
[12] LAND E H.An alternative technique for the computation of the designator in the retinex theory of color vision[J].Proceedings of The National Academy of Sciences,1986,83(10):3078-3080.
[13] 刘志成,王殿伟,刘颖,等.基于二维伽马函数的光照不均匀图像自适应校正算法[J].北京理工大学学报(自然科学版),2016,36(2):191-196. LIU Z C,WANG D W,LIU Y,et al.Adaptive adjustment algorithm for non-uniform illumination images based on 2D gamma function[J].Journal of Beijing Institute of Technology(Natural Science Edition),2016,36(2):191-196.(in Chinese)
[14] 马浩,景军锋,李鹏飞.基于机器视觉的管纱毛羽检测[J].西安工程大学学报,2017,31(3):377-382. MA H,JING J F,LI P F.Detection of tube hairiness based on machine vision[J].Journal of Xi’an Polytechnic University,2017,31(3):377-382.(in Chinese)
[15] XU L,YAN Q,XIA Y,et al.Structure extraction from texture via relative total variation[J].ACM Transactions on Graphics,2012,31(6):139.
[16] 张波,汤春明.基于相对总变差模型与自适应形态学的织物瑕疵检测[J].纺织学报,2017,38(5):145-149. ZHANG B,TANG C M.Fabric defect detection based on relative total variation model and adaptive mathematical morphology[J].Journal of Textile Research,2017,38(5):145-149.(in Chinese)
[17] MATAS J,CHUM O,URBAN M,et al.Robust wide-baseline stereo from maximally stable extremal regions[J].Image and Vision Computing,2004,22(10):761-767.
[18] 康锋,胡洁,张华熊,等.基于最大稳定极值区域的织物图案检索[J].纺织学报,2015,36(10):156-160. KANG F,HU J,ZHANG H X,et al.Fabric pattern retrieval based on maximum stable extremal regions[J].Journal of Textile Research,2015,36(10):156-160.(in Chinese)

Memo

Memo:
-
Last Update: 2019-10-07