|Table of Contents|

Caccioppoli inequality and higher integrability for the subelliptic ultraparabolic obstacle problems on the homogeneous group(PDF)

《纺织高校基础科学学报》[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2017年02期
Page:
207-213
Research Field:
Publishing date:

Info

Title:
Caccioppoli inequality and higher integrability for the subelliptic ultraparabolic obstacle problems on the homogeneous group
Author(s):
 DU Guangwei
 Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710129, China
Keywords:
subelliptic ultraparabolic equation obstacle problems Caccioppoli inequality higher integrability
PACS:
O 178
DOI:
10.13338/j.issn.1006-8341.2017.02.008
Abstract:
By constructing the suitable test function,establishing the representation formula for the weak solution and using estimates of singular integrals, a Caccioppoli inequality and higher integrability for weak solutions to the obstacle problems related to a class of second order nonlinear subelliptic ultraparabolic equations on the homogeneous group are obtained. These results are generalized the corresponding conclusions of ultraparabolic obstacle problems in the Euclidean case.

References:

[1] HEOMPMEM J,KILPELÖINEN T,MARTIO O.Nonlinear potential theory of degenerate elliptic equations[M].New York:Dover Publications,2006. [2] KINDERLEHRER D,STAMPACCHIA G.An introduction to variational inequalities and their applications[M].Pennsylvania:Society for Industrial and Applied Mathematics(SIAM),2000. [3] PETRPSUAM A,SHAHGHOLIAN H.Parabolic obstacle problems applied to finance[M]//Recent developments in nonlinear partial differential equations.Rhode Island:American Mathematical Society,2007:117-133. [4] FRANCESCO M D,PASCUCCI A,POLIDORO S.The obstacle problem for a class of hypoelliptic ultraparabolic equations[J].Proc R Soc Lond,Ser A,Math Phys Eng Sci,2008,464(2089):155-176. [5] FRENATZ M,NYSTRÖM K,PASCUCCI A,et al.Optimal regularity in the obstacle problem for Kolmogorov operators related to American Asian options[J].Math Ann,2010,347(4):805-838. [6] NYSTRÖM K,PASCUCCI A,POLIDORO S.Regularity near the initial state in the obstacle problem for a class of hypoelliptic ultraparabolic operators[J].J Differ Equations,2010,249(8):2044-2060. [7] FRENTZ M,GÖTMARK E,NYSTRÖM K.The obstacle problem for parabolic non-divergence form operators of Hörmander type[J].J Differ Equations,2012,252(9):5002-5041. [8] FRENTZ M.Regularity in the obstacle problem for parabolic non-divergence operators of Hörmander type[J].J Differ Equations,2013,255(10):3638-3677. [9] PASCUCCI A,POLIDORO S.The Moser’s iterative method for a class of ultraparabolic equations[J].Commun Contemp Math,2004,6(3):395-417. [10] PASCUCCI A.Kolmogorov equations in physics and in finance[M]//Elliptic and parabolic problems.A special tribute to the work of Haim Brezis.Basel:Birkhöuser,2005:353-364. [11] CINTI C,PASCUCCI A,POLIDORO S.Pointwise estimates for a class of non-homogeneous Kolmogorov equations[J].Math Ann,2008,340(2):237-264. [12] KOGPK A E,LANCONELLI E.An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations[J].Mediterr J Math,2004,1(1):51-80. [13] HÖMANDER L.Hypoelliptic second order differential equations[J].Acta Math,1967,119(1):147-171. [14] BONFIGLIOLI A,LANCONELLI E,UGUZZONI F.Stratified Lie groups and potential theory for their sub-Laplacians[M].Berlin:Springer,2007. [15] BRAMANTI M,BRANDOLINI L.Lp estimates for nonvariational hypoelliptic operators with VMO coefficients[J].Trans Am Math Soc,2000,352(2):781-822. [16] FOLLAND G B.Subelliptic estimates and function spaces on nilpotent Lie groups[J].Ark Mat,1975,13:161-207.

Memo

Memo:
-
Last Update: 2017-07-22