|Table of Contents|

A novel adaptive sliding mode controller for a class of uncertain fractional-order chaotic systems(PDF)

《纺织高校基础科学学报》[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2017年02期
Page:
279-285
Research Field:
Publishing date:

Info

Title:
A novel adaptive sliding mode controller for a class of uncertain fractional-order chaotic systems
Author(s):
 CAO YeWU Baowei
 College of Mathematics and Information Science,Shaanxi Normal University,Xi’an 710119,China
Keywords:
 fractional-order chaotic system adaptive control sliding mode control
PACS:
TP 273
DOI:
10.13338/j.issn.1006-8341.2017.02.020
Abstract:
An adaptive sliding mode method is proposed to stabilize a class of uncertain fractional-order chaotic systems.The fractional-order integrator is designed introduced to obtain a novel sliding surface,and the sliding mode dynamic equation is demonstrated to stability by fractional stability theory.Then a suitable adaptive sliding controller is constructed by the estimation of the upper bound of uncertainties,which can guarantee system stability and weaken the chattering in the system.Finally the fractional-order chen system and fraction-order system are taken as an examples to simulate.The simulation results show that the proposed method provides the robustness to parametric perturbation and external disturbances,and minimizes the chattering problem in sliding mode control.

References:

[1] DITTO W L,RAUSEO S N,SPANO M L.Experimental control of chaos[J].Physical Review Letters,1990,65(26):3211. [2] OTT E,GREBOGI C,YORKE J A.Controlling chaos[J].Physical Review Letters,1990,64(11):1196. [3] CHEN Shihua,LYU Jinhu.Synchronization of an uncertain unified chaotic system via adaptive control[J].Chaos,Solitons &Fractals,2002,14(4):643-647. [4] 杨叶红,肖剑,马珍珍.一个新分数阶混沌系统的同步和控制[J].山东大学学报(理学版),2014,49(2):76-88. YANG Yehong,XIAO Jian,MA Zhenzhen.Synchronization and control of a novel fractional-order chaotic system[J].Journal of Shandong University(Natural Science),2014 49(2):76-88. [5] El-MISIERY A E M,AHMED E.On a fractional model for earthquakes[J].Applied Mathematics and Computation,2006,178(2):207-211. [6] SABATIER J,MOZE M,FARGIES C.LMI stability conditions for fractional order systems[J].Computers & Mathematics with Applications,2010,59(5):1594-1609. [7] LI Chunguang,CHEN Guanrong.Chaos in the fractional order Chen system and its control[J].Chaos,Solitons &Fractals,2004,22(3):549-554. [8] 胡建兵,韩焱,赵灵冬.自适应同步参数未知的异结构分数阶超混沌系统[J].物理学报,2009,58(3):2235. HU Jianbing,HAN Yan,ZHAO Lingdong.Adaptive synchronization between different fractional hyperchaotic systems with uncertain parameters[J].Acta Physica Sinica,2009,58(3):2235. [9] ZHONG Q S,BAO G F,YU Y B,et al.Impulsive control for fractional-order chaotic systems[J].Chinese Physics Letters,2008,25(8):2812. [10] 马铁东,江伟波,浮洁.一类分数阶混沌系统的自适应同步[J].物理学报,2012,61(16):160506. MA Tiedong,JIANG Weibo,FU Jie.Adaptive synchronization of a class of fractional-order chaotic systems[J].Acta Physica Sinica,2012,61(16):160506. [11] 刘恒,李生刚,孙业国,等.带有未知非对称控制增益的不确定分数阶混沌系统自适应模糊同步控制[J].物理学报,2015,64(7):070503. LIU Heng,LI Shenggang,SUN Yeguo,et al.Adaptive fuzzy synchronization for uncertain fractional-order chaotic systems with unknown non-symmetrical control gain[J].Acta Physica Sinica,2015,64(7):070503. [12] 李睿,张广军,姚宏,等.参数不确定的分数阶混沌系统广义错位延时投影同步[J].物理学报,2014,63(23):230501. LI Rui,ZHANG Guangjun,YAO Hong,et al.Generalized dislo cated lag pro jective synchronization of fractional chaotic systems with fully uncertain parameters[J].Acta Physica Sinica,2014,63(23):230501. [13] EDWARDS C,SPURGEON S K.Sliding mode control:Theory and applications[M] London:Taylor &Francis Press,1998. [14] DADRAS S,MOMENI H R.Control of a fractional-order economical system via sliding mode[J].Physica A:Statistical Mechanics and its Applications,2010,389(12):2434-2442. [15] CHEN Diyi,ZHANG Runfang,SPROTT J C,et al.Synchronization between integer-order chaotic systems and a class of fractional-order chaotic system based on fuzzy sliding mode control[J].Nonlinear Dynamics,2012,70(2):1549-1561. [16] YIN Chun,ZHONG Souming,CHEN Wufan.Design of sliding mode controller for a class of fractional-order chaotic systems[J].Communications in Nonlinear Science and Numerical Simulation,2012,17(1):356-366. [17] FAIEGHI M R,DELAVARI H,BALEANU D.A note on stability of sliding mode dynamics in suppression of fractional-order chaotic systems[J].Computers & Mathematics with Applications,2013,66(5):832-837. [18] AGHABABA M P.Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller[J].Communications in Nonlinear Science and Numerical Simulation,2012,17(6):2670-2681. [19] ZHOU Ke,WANG Zhihui,GAO Like,et al.Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance[J].Chinese Physics B,2015,24(3):030504. [20] KHALIL H K.Nonlinear system[M].New Jersey:Prentice Hall,2002. [21] PISANO A,RAPAIC M R,JELICIC Z D,et al.Sliding mode control approaches to the robust regulation of linear multivariable fractional-order dynamics[J].International Journal of Robust and Nonlinear Control,2010,20(18):2045-2056. [22] 梁舒,彭程,王永.分数阶系统线性矩阵不等式稳定性判据的改进与鲁棒镇定:0<α<1 的情况[J].控制理论与应用,2013,30(4):531-535. LIANG Shu,PENG Cheng,WANG Yong.Improved linear matrix inequalities stability criteria for fractional order systems and robust stabilization synthesis:The 0<α<1 case[J].Control Theory & Application,2013,30(4):531-535. [23] UTKIN V I.Sliding modes in control optimization[M].Berlin:Springer Verlag,1992. [24] SLOTINE J J E,LI W.Applied nonlinear control[M].New Jersey:Prentice Hall,1991.

Memo

Memo:
-
Last Update: 2017-07-22