|Table of Contents|

Wolfe dual conditoins of B-(p,r,a) convex functions(PDF)

《纺织高校基础科学学报》[ISSN:1006-6977/CN:61-1281/TN]

Issue:
2016年03期
Page:
356-359
Research Field:
Publishing date:

Info

Title:
Wolfe dual conditoins of B-(p,r,a) convex functions
Author(s):
 MIAO Hongmei
 Institute of Physics and Electronic Information, Yan’an University, Yan’an 716000,Shaanxi,China
Keywords:
 generalized invex functions multiobjective Wolfe duality non-smooth
PACS:
O 221.2
DOI:
10.13338/j.issn.1006-8341.2016.03.014
Abstract:
 The convex functions is generalized to research the corresponding convex programming problems, by the non-smooth analysis, a class of new generalized invex functions were defined,Wolfe duality problem of multiobjective semi-infinite programming involving the defined function was researched, weak dual conditions and strictly converse dual conditions were obtained,some important conclusions were obtained under the new convexity.

References:

 [1] ANTCAZK T.A class of <i>B-(p,r)</i> invex functions and mathematical programming[J].J Math Anal Appl,2003,286(1):187-206.
[2] ZHANG Y,ZHU B,XU Y T.A class of Lipschitz <i>B-(p,r)</i>-invex functions and nonsmooth programming[J].OR Transactions,2009,13(1):61-71.
[3] GULATI T R,AGARWAL Divya.Optimality and duality in nondifferentiable multiobjective mathematical programming involving higher order <i>(F,α,ρ,d)</i>-type I functions[J].Journal of Applied Mathematics and Computing,2008,27(1):345-364.
[4] ANTCZAK Tadeusz.Generalized fractional minimax programming with <i>B-(p,r)</i>-invexity[J].Computer and Mathematics with Applications,2008,56:1505-1525.
[5] LIANG Zhian,ZHANG Zhenhua.The efficiency conditions and duality for uniform invex multiobjective program[J].OR Transactions,2009,13(1):44-50.
[6] ANTCZAK Tadeudz,SINGH Vinay.Optimality and duality for minimax fractional programming with support function under <i>B-(p,r)</i>-type I assumptions[J].Mathematical and Computer Modeling,2013,57:1083-1100.
[7] HAMEL Andreas H,LOHNE Andres.Lagrange duality in set optimization[J].Journal of Optimization Theory and Application,2012,161(2):368-397.
[8] MISHRA S K,LAI K K,SINGH Vinay.Optimality and duality for minimax fractional programming with support function under <i>(c,α,ρ,d)</i>-convexity[J].Journal of Computional and Applied Mathematics,2015,274:1-10.
[9] GUPTA Pekha,SRIVASTAVA M.Optimality and duality for nonsmooth multiobjective programming using <i>G</i>-type I functions[J].Applied Mathematics and Compution,2014,240:294-307.
[10] 李向有,张庆祥.广义<i>I</i>型函数的对偶性条件[J].贵州大学学报:自然科学版,2014,31(2):10-12.
LI Xiangyou,ZHANG Qingxiang.Dual conditions of generalized <i>I</i> type functions[J].Journal of Guizhou University:Natural Sciences,2014,31(2):22-24.
[11] JAYSWAL Anurg,PRASAD Ashish Kumar.On minimax fractional programming problems involving generalized <i>(H<sub>p</sub>,r)</i> invex functions[J].Journal of Industrial and Management of Optimization,2014,10(4):1001-1018.
[12] 袁泉.关于一个数论对偶函数[J].西安工程大学学报,2013,27(2):253-256.
YUAN Quan.On the orithmetical dual function[J].Journal of Xi’an Polytechnic University,2013,27(2):253-256.
[13] JAYSWAL Anurg,KUMAR Rajnish,KUMAR Dilip.Minimax fractional programming problems involving nonsmooth generalized <i>α</i> uninvex functions[J].Journal of Optimization and Control:Theories and Application,2013,3(1):7-22.
[14] JAYSWAL Anurg.On nonsmooth multiobjective fractional programming problems involving <i>(p,r)-ρ-(η,θ)</i> invex functions[J].Yugoslav Journal of Operations Research,2013,23:367-386.
[15] CHUONG Thai Doan,KIM Do Sang.Nonsmooth semi-infinite multiobjective optimization problems[J].Journal of Optimization Theory and Application,2014,160(3):748-762.
[16] 江维琼.半预不变凸多目标规划的最优性条件及Wolfe型对偶定理[J].华东师范大学学报:自然科学版,2006(3):32-36.
JIANG Weiqiong.Optimization conditions and Wolfe type duality theory of semi-preinvex multiobjective programming[J].Journal of East China Normal University:Natural Science,2006(3):32-36.
[17] KIM Do Sang,SCHAIBLE Siegfried.Optimality and duality for invex nonsmooth multiobjective programming problems[J].Optimization,2004,53(2):165-176.
[18] MAEDA T.Constraint qualification in multiobjective optimization problems differentiable case[J].Journal of Optimization Theory and Application,1994,80:483-500.
[19] EGUDO R.Efficiency and generalized convex duality for multiobjective program[J].Journal of Mathematical Analysis &amp; Applications,1989,138(1):84-94.

Memo

Memo:
-
Last Update: 2016-10-08