GARCH(1, 1) 模型多变点的SupF检验
赵蕊, 赵文芝, 吕会琴     
西安工程大学 理学院, 陕西 西安 710048
摘要:为研究GARCH(1,1)模型的多变点检验问题,将GARCH(1,1)模型的多变点检验问题转化为ARMA(1,1)模型的多变点检验问题,给出SupF检验统计量,在原假设下得到检验统计量的极限分布,并对GARCH(1,1)模型的多变点问题进行数值模拟.模拟结果表明了SupF检验的可行性.
关键词GARCH(1, 1) 模型     ARMA(1, 1) 模型     多变点检验     SupF检验     极限分布    
Multiple change points detection of GARCH(1, 1) model with SupF method
ZHAO Rui, ZHAO Wenzhi, LYU Huiqin     
School of Science, Xi'an Polytechnic University, Xi'an 710048, China
Abstract: To research the detection propblem of multiple change points in GARCH(1, 1) model, the multiple change points in GARCH(1, 1) model is changed into which in ARMA(1, 1) model.The SupF test statistic is proposed, and the limiting distribution for test statistics is derived under null hypothesis. The situations in which multiple changes exist in GARCH (1, 1) model is simulated, which shows the feasibility of the SupF test.
Key words: GARCH(1, 1) model     ARMA(1, 1) model     multiple change points     SupF test     limiting distribution    
0 引言

Andreoue等[1]在Inclán等[2]的基础上研究了GARCH(1, 1) 模型的变点问题, Lee等[3]提出构造RCUSUM统计量来研究GARCH(1, 1) 模型的变点问题, Chu[4]及Kokoszka等[5]研究了CARCH模型的单变点问题, Pedro[6]检验了GARCH(1, 1) 模型波动率方程中的单个参数变化问题.在国内, 文献[7]对GARCH模型参数变化的残量进行检验, 文献[8]对GARCH(1, 1) 模型中变点的个数和位置都未知的多变点进行了检验, 文献[9]对GARCH模型的均值多变点进行了ANOVA检验.文献[10]提出了Sup-Wald, Sup-LM和Sup-LR方法.文献[11-13]在Sup-Wald, Sup-LM等统计性质研究方面取得了较大进展.文献[14]利用SupF检验统计量检验了ARCH(1) 模型的多变点问题.笔者在文献[15]基础上利用SupF检验统计量检验了ARMA(1, 1) 模型的多变点问题, 在此基础上本文将GARCH(1, 1) 模型转化为ARMA(1, 1) 模型, 然后构造SupF检验统计量来检验模型参数的多变点问题.

考虑GARCH(1, 1) 模型

$ {\eta _t} = {\sigma _t} \cdot {v_t},\sigma _t^2 = \left\{ \begin{array}{l} {\varphi _0} + {\varphi ^{\left( 1 \right)}}\sigma _{t - 1}^2 + {\theta ^{\left( 1 \right)}}\eta _{t - 1}^2,t = 1, \cdots ,T_1^ * ,\\ {\varphi _0} + {\varphi ^{\left( 2 \right)}}\sigma _{t - 1}^2 + {\theta ^{\left( 2 \right)}}\eta _{t - 1}^2,t = T_1^ * + 1, \cdots ,T_2^ * ,\\ \cdots \\ {\varphi _0} + {\varphi ^{\left( m \right)}}\sigma _{t - 1}^2 + {\theta ^{\left( m \right)}}\eta _{t - 1}^2,t = T_m^ * + 1, \cdots ,T. \end{array} \right. $ (1)

其中, {vt}独立同分布, 且有

$ \left\{ {{v_t}} \right\} \sim N\left( {0,1} \right),{\phi _0} > 0,{\phi ^{\left( i \right)}} \ge 0,{\theta ^{\left( i \right)}} \ge 0,{\phi ^{\left( i \right)}} + {\theta ^{\left( i \right)}} < 1,\left( {i = 1,2, \cdots ,m} \right). $

考虑如下检验问题:(H0):m=0, (H1):m=k.

当(H0)成立时, ${\phi ^{\left(1 \right)}} = {\phi ^{\left(2 \right)}} = \cdots = {\phi ^{\left(m \right)}} = \phi, {\theta ^{\left(1 \right)}} = {\theta ^{\left(2 \right)}} = \cdots = {\theta ^{\left(m \right)}} = \theta.$

当(H1)成立时, 存在k个变点且k未知, ${\phi ^{\left(1 \right)}} \ne {\phi ^{\left(2 \right)}} \ne \cdots \ne {\phi ^{\left(m \right)}}, {\theta ^{\left(1 \right)}} \ne {\theta ^{\left(2 \right)}} \ne \cdots \ne {\theta ^{\left(m \right)}}.$

1 主要结果 1.1 模型转化及假设

考虑GARCH(1, 1) 模型

$ {\eta _t} = {\sigma _t} \cdot {v_t},\sigma _t^2 = {\varphi _0} + \varphi \eta _{t - 1}^2 + \theta \sigma _{t - 1}^2. $ (2)

$ {\varepsilon _t} = \eta _t^2 - \sigma _t^2 = \sigma _t^2\left( {\varepsilon _t^2 - 1} \right),{F_t} = \sigma \left( {{y_0},{\varepsilon _1},{\varepsilon _2}, \cdots ,{\varepsilon _t}} \right), $

$ \sigma _t^2 = \eta _t^2 - {\varepsilon _t}, $ (3)

将式(3) 代入式(2), 可得

$ \eta _t^2 - E\eta _t^2 = {\phi _0} - \left( {1 - \phi - \theta } \right)E\eta _t^2 + \left( {\phi + \theta } \right)\left( {\eta _{t - 1}^2 - E\eta _{t - 1}^2} \right) + {\varepsilon _t} - \theta {\varepsilon _{t - 1}}. $

由文献[16]可知

$ E\eta _t^2 = E\left( {\sigma _t^2} \right) = \frac{{{\phi _0}}}{{1 - \phi - \theta }}, $

则有

$ {y_t} = \left( {\varphi + \theta } \right){y_{t - 1}} - \theta {\varepsilon _{t - 1}} + {\varepsilon _t}. $ (4)

对于模型(2) 作如下假设:

(B1) Ti=[Tλi], (i=1, …, m), 其中[·]表示取整运算, 1≤TjTiT, 1<jim, T0=0,

$ {T_{m + 1}} = T,0 < {\lambda _1} < {\lambda _2} < \cdots < {\lambda _m} < 1,{\lambda _0} = 0,{\lambda _{m + 1}} = 1; $

(B2)存在α>0, 使得$\mathop {\sup }\limits_{t \ge 1} E{\left({v_t^2 -1} \right)^{2\left({1 + \alpha } \right)}}<\infty $, a.s., 则$E(\varepsilon _t^{2(1 + \alpha)}|{F_{t -1}}) = \sigma _t^{4(1 + \alpha)}E{({v_t}^2 -1)^{2{\rm{ }}(1 + \alpha)}}$

(B3):设E(vt4)存在, 记E(vt2-1)2=A, 其中A<∞, 则$E(\varepsilon _t^2|{F_{t -1}}) = \sigma _t^4E{(v_t^2 -1)^2} = A\sigma _t^4$

(B4):设E(ηt8)<∞.

1.2 SupF统计量

定义

$ {F_T}\left( {{\lambda _1},{\lambda _2}, \cdots ,{\lambda _k}} \right) = \frac{{T - 2\left( {k + 1} \right)}}{{2k}}\frac{{SS{R_0} - SS{R_k}}}{{SS{R_k}}}. $

其中SSR0表示没有变点时的总残差, 即

$ SS{R_0} = \sum\limits_{t = 1}^T {{{\left( {{y_t} - {{\hat y}_t}} \right)}^2}} . $

SSRk表示模型在(T1, T2, …, Tm)下被分为m+1段后的总残差, 即

$ SS{R_k} = \sum\limits_{i = 1}^{m + 1} {\sum\limits_{t = T_{i - 1} + 1}^{Ti} {{{\left( {{y_t} - {{\hat y}_t}} \right)}^2}} } . $

其中${{\hat y}_t} = \left({\hat \varphi + \hat \theta } \right){y_{t -1}} -\hat \theta {\varepsilon _{t -1}}, \hat \varphi, \hat \theta $分别是$\phi $, θ用最小二乘法得到的估计量.

考虑检验统计量

$ \sup {F_T}\left( k \right) = \mathop {\sup }\limits_{\left( {{\lambda _1},{\lambda _2}, \cdots ,{\lambda _k}} \right) \in {\mathit{\Lambda }_\varepsilon }} {F_T}\left( {{\lambda _1},{\lambda _2}, \cdots ,{\lambda _k}} \right), $

其中

$ {\mathit{\Lambda }_\varepsilon } = \left\{ {\left( {{\lambda _1},{\lambda _2}, \cdots ,{\lambda _k}} \right),\left| {{\lambda _i} - {\lambda _j}} \right| \ge \varepsilon ,{\lambda _1} \ge \varepsilon ,{\lambda _k} \le 1 - \varepsilon ,1 < j < i < m} \right\}. $

通过Monte Carlo方法对检验统计量进行数值模拟, 可得当原假设(H0)成立时的检验统计量极限分布的渐近α分位数, 从而在置信水平α下, 原假设的拒绝域为(Fk(α), +∞).

定理1 在假设条件(B1)~(B4)成立以及原假设(H0)下, 有

$ \sup {F_T}\left( k \right) = \xrightarrow{d}{F_k}{ = ^{\underline{\underline {{\text{def}}}} }}\mathop {\sup }\limits_{\left( {{\lambda _1},{\lambda _2}, \cdots ,{\lambda _k}} \right) \in {\mathit{\Lambda }_\varepsilon }} F\left( {{\lambda _1},{\lambda _2}, \cdots ,{\lambda _k}} \right). $

其中

$ \begin{gathered} F\left( {{\lambda _1},{\lambda _2}, \cdots ,{\lambda _k}} \right){ = ^{\underline{\underline {{\text{def}}}} }}\frac{{3k}}{2}{{\chi ^2}}\left( {\frac{{\left[ {{{\left( {\phi + \theta } \right)}^2} - 1} \right]E\left( {\sigma _t^4y_{t - 1}^2} \right)}}{{\left( {1 + {\theta ^2}} \right)A{{\left( {E\sigma _t^4} \right)}^2}}}} \right) + \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {k + 2} \right)\sum\limits_{i = 1}^{k + 1} {\left[ {\frac{{\left[ {1 - {{\left( {\phi + \theta } \right)}^2}} \right]E\left( {\sigma _t^4y_{t - 1}^2} \right)}}{{\left( {1 + {\theta ^2}} \right){{\left( {E\sigma _t^4} \right)}^2}}}N\left( {0,{\lambda _i} - {\lambda _{i - 1}}} \right)N\left( {0,1 - \left( {{\lambda _i} - {\lambda _{i - 1}}} \right)} \right)} \right]} , \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {T \to \infty } \right). \hfill \\ \end{gathered} $
$ {\mathit{\Lambda }_\varepsilon } = \left\{ {\left( {{\lambda _1},{\lambda _2}, \cdots ,{\lambda _k}} \right),\left| {{\lambda _i} - {\lambda _j}} \right| \geqslant \varepsilon ,1 < j < i < m,{\lambda _1} \geqslant \varepsilon ,{\lambda _k} \leqslant 1 - \varepsilon } \right\}. $
2 定理证明

为证明定理1, 首先给出如下引理.

引理1 在假设条件(B1)~(B4)以及原假设(H0)下, ∀s∈[0, 1], 当T→∞时,

$ \frac{{y_{\left[ {Ts} \right]}^2}}{T}\xrightarrow{P}0, $ (5)
$ \frac{1}{T}\sum\limits_{t = 1}^{\left[ {Ts} \right]} {{\varepsilon _t}{y_{t - 1}}} \xrightarrow{P}0, $ (6)
$ \frac{1}{T}\sum\limits_{t = 1}^{\left[ {Ts} \right]} {{\varepsilon _{t - 1}}{y_{t - 1}}} \xrightarrow{P}0. $ (7)

证明 类似文献[14]可以证明引理1成立.

引理2 若假设(B1)~(B4)成立, 那么, 当T→∞且i>j时, 在原假设(H0)下有

$ \frac{1}{T}\sum\limits_{t = {T_j} + 1}^{Ti} {y_t^2\xrightarrow{P}\frac{{1 + {\theta ^2}}}{{1 - {{\left( {\varphi + \theta } \right)}^2}}}A\left( {{\lambda _i} - {\lambda _j}} \right)E{\sigma ^4}} , $ (8)
$ \frac{1}{{\sqrt T }}\sum\limits_{t = {T_j} + 1}^{Ti} {{\varepsilon _t}{y_{t - 1}}\xrightarrow{d}N\left( {0,A\left( {{\lambda _i} - {\lambda _j}} \right)E\left( {{\sigma ^4}y_{t - 1}^2} \right)} \right)} . $ (9)

证明类似文献[14]可以证明引理2成立.

引理3 若假设(B1)~(B4)成立, 令

$ {X_{iT}} = \frac{1}{{\sqrt T }}\sum\limits_{t = {T_{i-1}} + 1}^{Ti} {{\varepsilon _t}{y_{t - 1}},{Z_i} = N\left( {0,A\left( {{\lambda _i} - {\lambda _{i - 1}}} \right)E\left( {{\sigma ^4}y_{t - 1}^2} \right)} \right)} , $

则当T→∞时, 在原假设(H0)下{Xi}满足联合分布收敛, 即

$ \left( {{X_{1T}},{X_{2T}}, \cdots ,{X_{k + 1,T}}} \right)\xrightarrow{d}\left( {{Z_1},{Z_2}, \cdots ,{Z_{k + 1}}} \right). $

证明 类似文献[14]可以证明引理3成立.

定理1的证明

$ {F_T}\left( {{\lambda _1},{\lambda _2}, \cdots ,{\lambda _k}} \right) = \frac{{T - 2\left( {k + 1} \right)}}{{2k}}\frac{{SS{R_0} - SS{R_k}}}{{SS{R_k}}}, $

FT*=SSR0-SSRk, DR(i, j)表示在原假设(H0)下从Ti-1+1时刻到Tj时刻的残差, DU(i, j)表示模型在被分为k+1段后从Ti-1+1时刻到Tj时刻的残差.从而有

$ F_T^ * = {D^R}\left( {1,k + 1} \right) - \sum\limits_{i = 1}^{k + 1} {{D^U}\left( {i,i} \right)} = \sum\limits_{i = 1}^{k + 1} {\left[ {{D^R}\left( {i,i} \right) - {D^U}\left( {i,i} \right)} \right]} . $

对于任意i, 有

$ \begin{array}{l} {F_{T,i}} = {D^R}\left( {i,i} \right) - {D^U}\left( {i,i} \right) = \\ \;\;\;\;\;\;\;\;\;\sum\limits_{t = T_{i - 1}}^{Ti} {{{\left[ {\left( {\hat \phi - \phi + \hat \theta - \theta } \right){y_{t - 1}} + \left( {\hat \theta - \theta } \right){\varepsilon _{t - 1}} + {\varepsilon _t}} \right]}^2}} - \\ \;\;\;\;\;\;\;\;\;\sum\limits_{t = {T_{i - 1}}}^{Ti} {{{\left[ {\left( {{{\hat \phi }_i} - {\phi _i} + {{\hat \theta }_i} - {\theta _i}} \right){y_{t - 1}} + \left( {{{\hat \theta }_i} - {\theta _i}} \right){\varepsilon _{t - 1}} + {\varepsilon _t}} \right]}^2}} . \end{array} $

其中$\hat \phi, \hat \theta $, 是在原假设(H0)下的最小二乘估计, ${{\hat \phi }_i}, {{\hat \theta }_i}$是模型在被分为k+1段后的最小二乘估计.计算可得

$ \begin{array}{l} {F_{T,i}} = \frac{{\sum\limits_{t = {T_{i - 1}} + 1}^{Ti} {y_{t - 1}^2} }}{{{{\left( {\sum\limits_{t = 1}^{Ti} {y_{t - 1}^2} } \right)}^2}}}{\left( {\sum\limits_{t = {T_{i - 1}} + 1}^{Ti} {{\varepsilon _t}{y_{t - 1}}} + \sum\limits_{l \ne i} {\sum\limits_{t = {T_{i - 1}} + 1}^{Ti} {{\varepsilon _t}{y_{t - 1}}} } } \right)^2} + \\ \;\;\;\;\;\;\;\;\;\frac{{2\sum\limits_{t = {T_{i - 1}} + 1}^{Ti} {{\varepsilon _t}{y_{t - 1}}} }}{{\sum\limits_{t = 1}^{Ti} {y_{t - 1}^2} }}\left( {\sum\limits_{t = {T_{i - 1}} + 1}^{Ti} {{\varepsilon _t}{y_{t - 1}}} + \sum\limits_{l \ne i} {\sum\limits_{t = {T_{i - 1}} + 1}^{Ti} {{\varepsilon _t}{y_{t - 1}}} } } \right) - \frac{{3{{\left( {\sum\limits_{t = {T_{i - 1}} + 1}^{Ti} {{\varepsilon _t}{y_{t - 1}}} } \right)}^2}}}{{\sum\limits_{t = {T_{i - 1}} + 1}^{Ti} {y_{t - 1}^2} }}. \end{array} $

由引理3可知

$ \begin{gathered} \hfill \\ \left( {{X_{1T}},{X_{2T}}, \cdots ,{X_{k + 1,T}}} \right)\xrightarrow{P}\left( {{Z_1},{Z_2}, \cdots ,{Z_{k + 1}}} \right). \hfill \\ \end{gathered} $

其中

$ {X_{iT}} = \frac{1}{{\sqrt T }}\sum\limits_{t = {T_{i - 1}} + 1}^{Ti} {{\varepsilon _t}{y_{t - 1}}} ,{Z_i} = N\left( {0,A\left( {{\lambda _i} - {\lambda _{j}}} \right)E\left( {{\sigma ^4}y_{t - 1}^2} \right)} \right), $

且有

$ \begin{gathered} \frac{1}{T}\sum\limits_{t = {T_{i - 1}} + 1}^{Ti} {y_{t - 1}^2} \xrightarrow{P}\frac{{1 + {\theta ^2}}}{{1 - {{\left( {\phi + \theta } \right)}^2}}}A\left( {{\lambda _i} - {\lambda _{i - 1}}} \right)E\sigma _t^4,\left( {T \to \infty } \right), \hfill \\ {\left( {\frac{1}{T}\sum\limits_{t = {T_{i - 1}} + 1}^{Ti} {y_{t - 1}^2} } \right)^2}\xrightarrow{P}\frac{{{{\left( {1 + {\theta ^2}} \right)}^2}\left( {{\lambda _i} - {\lambda _{i - 1}}} \right) \cdot A \cdot {{\left( {E\sigma _t^4} \right)}^2}}}{{{{\left[ {1 - {{\left( {\varphi + \theta } \right)}^2}} \right]}^2}}},\left( {T \to \infty } \right). \hfill \\ \end{gathered} $

利用连续映射定理, 进一步得到

$ \begin{gathered} F_T^ * \xrightarrow{d}\sum\limits_{i = 1}^{k + 1} {\left[ {\frac{{3\left[ {1 - {{\left( {\phi + \theta } \right)}^2}} \right]E\left( {\sigma _t^4y_{t - 1}^2} \right)\left( {{\lambda _i} - {\lambda _{i - 1}} - 1} \right)}}{{\left( {1 + {\theta ^2}} \right)E\sigma _t^4}}{{\chi ^2}}\left( 1 \right)} \right] + } \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{i = 1}^{k + 1} {\left[ {\frac{{2\left[ {1 - {{\left( {\phi + \theta } \right)}^2}} \right]E\left( {\sigma _t^4y_{t - 1}^2} \right)\left( {1 + \left( {{\lambda _i} - {\lambda _{i - 1}}} \right)} \right)}}{{\left( {1 + {\theta ^2}} \right)E\sigma _t^4}}N\left( {0,{\lambda _i} - {\lambda _{i - 1}}} \right)N\left( {0,1 - \left( {{\lambda _i} - {\lambda _{i - 1}}} \right)} \right)} \right].} \hfill \\ \end{gathered} $

又由于

$ \frac{1}{{T - 2\left( {k + 1} \right)}}SS{R_k}\xrightarrow{P}A \cdot E\sigma _t^4,\left( {T \to \infty } \right), $

从而有

$ {F_T}\left( {{\lambda _1},{\lambda _2}, \cdots ,{\lambda _k}} \right)\xrightarrow{d}F\left( {{\lambda _1},{\lambda _2}, \cdots ,{\lambda _k}} \right). $

其中

$ \begin{gathered} F{\left( {{\lambda _1},{\lambda _2}, \cdots ,{\lambda _k}} \right)^{\underline{\underline {{\text{def}}}} }}\frac{{3k}}{2}{{\chi ^2}}\left( {\frac{{\left[ {{{\left( {\phi + \theta } \right)}^2} - 1} \right]E\left( {\sigma _t^4y_{t - 1}^2} \right)}}{{\left( {1 + {\theta ^2}} \right)A{{\left( {E\sigma _t^4} \right)}^2}}}} \right) + \hfill \\ \left( {k + 2} \right)\sum\limits_{i = 1}^{k + 1} {\left[ {\frac{{\left[ {1 - {{\left( {\theta + \varphi } \right)}^2}} \right]E\left( {\sigma _t^4y_{t - 1}^2} \right)}}{{\left( {1 + {\theta ^2}} \right)E\sigma _t^4}}N\left( {0,{\lambda _i} - {\lambda _{i - 1}}} \right)N\left( {0,1 - \left( {{\lambda _i} - {\lambda _{i - 1}}} \right)} \right)} \right]} ,\left( {T \to \infty } \right). \hfill \\ \;\;\;\;\;\;\;\;\;{\mathit{\Lambda }_\varepsilon }{\text{ = }}\left\{ {\left( {{\lambda _1},{\lambda _2}, \cdots ,{\lambda _k}} \right),\left| {{\lambda _i} - {\lambda _j}} \right| \geqslant \varepsilon ,{\lambda _1} \geqslant \varepsilon ,{\lambda _k} \leqslant 1 - \varepsilon ,1 < j < i < m} \right\}. \hfill \\ \end{gathered} $

从而

$ \sup {F_T}\left( k \right)\xrightarrow{d}{F_k}^{\underline{\underline {{\text{def}}}} }\mathop {\sup }\limits_{\left( {{\lambda _1},{\lambda _2}, \cdots ,{\lambda _k}} \right) \in {\mathit{\Lambda }_\varepsilon }} F\left( {{\lambda _1},{\lambda _2}, \cdots ,{\lambda _k}} \right). $

证毕.

3 数值模拟

利用Monte Carlo方法对检验统计量进行数值模拟.首先考虑GARCH(1, 1) 模型

$ {\eta _t} = \sqrt {{\varphi _0} + \varphi \sigma _{t - 1}^2 + \theta \eta _{t - 1}^2} \cdot {v_t}, $

其中, $\phi $0>0, $\phi $≥0, θ≥0, $\phi $+θ<1, vt~N(0, 1).

假设当原假设(H0)为真时生成y1, …, y1 000共1 000个样本, 其中

$ {\eta _t} = \sqrt {0.1 + 0.2\sigma _{t - 1}^2 + 0.3\eta _{t - 1}^2} \cdot {v_t},t = 1,2, \cdots ,1000. $

y0=0是初始数据, vt~N(0, 1), 可以得到检验统计量极限分布在检验水平分别为0.1, 0.05, 0.025, 0.01下对应的临界值分别为5.584 9, 8.659 3, 12.294 0, 18.954 2.

$\phi $0=0.2, $\phi $=0.25, θ=0.4, 利用模型

$ {\eta _t} = \sqrt {0.2 + 0.25\sigma _{t - 1}^2 + 0.4\eta _{t - 1}^2} \cdot {v_t},t = 1,2, \cdots ,1000. $

取样本容量分别为n=500, 800, 1 000, 重复试验400次, 在检验的显著性水平α=0.05下计算拒绝原假设的频率, 模拟结果见表 1.由表 1可知, 样本容量n越大, 经验水平越接近0.05, 检测水平失真越小.

表 1 检验统计量的经验水平 Table 1 Empirical size of test statistics
样本容量n=500n=800n=1 000
经验水平0.093 20.076 30.053 2

在模拟统计量的经验势函数值时, 重复进行400次试验, 分别取样本容量依次为n=500, 800, 1 000, 在检验的显著性水平为α=0.05下, 用400次试验中拒绝原假设的频率作为经验势函数值, 其中考虑如下数据生成过程:

$ {\eta _t} = \left\{ \begin{gathered} \sqrt {{\varphi _0} + \varphi \sigma _{t - 1}^2 + \theta \eta _{t - 1}^2} \cdot {v_t},t = 1, \cdots ,\frac{n}{2}, \hfill \\ \sqrt {\varphi _0^ * + {\varphi ^ * } + \sigma _{t - 1}^2 + {\theta ^ * }\eta _{t - 1}^2} \cdot {v_t},t = \frac{n}{2} + 1, \cdots ,n. \hfill \\ \end{gathered} \right. $

其中, vt~N(0, 1), t=1, 2, …, n, n为样本容量.

模拟过程中取$\phi $0=0.2, $\phi $=0.1, θ=0.2, $\phi $0*, $\phi $*, θ*的取值如表 2.经过400次试验可以得到SupF检验统计量FT的经验势函数值如表 2.

表 2 检验统计量的经验势函数值 Table 2 Empirical power of test statistics
($\phi $0*, $\phi $*, θ*)n=500n=800n=1 000
(0.3, 0.2, 0.4)0.584 20.675 30.720 9
(0.2, 0.3, 0.4)0.597 30.725 80.872 3
(0.1, 0.24, 0.35)0.653 00.813 50.901 5

表 2中可以看出, 当样本容量增加时, 经验势的函数值也在增加, 并且样本容量越大, 经验势函数值越接近于1, 这说明SupF统计量在GARCH(1, 1) 模型的变点检验中的可行性.

参考文献
[1] ANDREOUE E, GHYSELS E. Detecting multiple breaks in financial market volatility dynamics[J]. Journal of Applied Econometric, 2002, 17(5): 579-600 DOI:10.1002/(ISSN)1099-1255
[2] INCLAN C, TIAO G C. Use of cumulative sums of squares for retrospective detection of changes of variances[J]. Journal of the American Statistical Association, 1994, 89(3): 913-923
[3] LEE S, TOKUTSU Y. The cusum test for the constancy parameters in regression models with ARCH errors[J]. Journal of the Japan Statistical Society, 2004, 34(2): 173-188 DOI:10.14490/jjss.34.173
[4] CHU C S. Detecting parameter shift in GARCH models[J]. Econometric Reviews, 1995, 14(2): 241-266 DOI:10.1080/07474939508800318
[5] KOKOSZKA P, TEYSSIERE G. Change-point detection in GARCH models:Asymptotic and bootstrap tests[J]. Core Discussion Papers, 2003, 8(1): 66-78
[6] GALEANO P, TSAY Ruey S. Shifts in individual parameters of a GARCH model[J]. Journal of Financial Econometrics, 2010, 8(1): 122-153 DOI:10.1093/jjfinec/nbp007
[7] 韩四儿, 田铮, 王红军. GARCH模型参数变化的残量检验[J]. 应用概率统计, 2008, 24(2): 113-122
HAN Sier, TIAN Zheng, WANG Hongjun. The residual test for parameters change in GARCH models[J]. Chinese Journal of Applied Probability and Statistics, 2008, 24(2): 113-122
[8] 杨文杰, 孙小军, 李艳平. GARCH(1, 1) 模型参数的多变点检验[J]. 宁夏大学学报(自然科学版), 2009, 30(4): 314-317
YANG Wenjie, SUN Xiaojun, LI Yanping. Testing for multiple change-point in GARCH models[J]. Journal of Ningxia University(Natural Science Edition), 2009, 30(4): 314-317
[9] 吕会琴, 赵文芝, 赵蕊. 厚尾相依序列均值多变点ANOVA型检验[J]. 纺织高校基础科学学报, 2016, 29(1): 55-58
LYU Huiqin, ZHAO Wenzhi, ZHAO Rui. An ANOVA-TYPE test for multiple change points in the mean of heavy-tailed dependent sequence[J]. Basic Sciences Journal of Textile Universities, 2016, 29(1): 55-58
[10] ANDREWS. Tests for parameter instability and structural change with unknown change point[J]. Econometrica, 1993, 61(1): 821-856
[11] HANSEN B E. Testing linearity[J]. Journal of Econometric Surveys, 1999, 13(5): 551-576 DOI:10.1111/1467-6419.00098
[12] HANSEN B E. Sample splitting and threshold estimation[J]. Econometrica, 2000, 68(3): 575-603 DOI:10.1111/ecta.2000.68.issue-3
[13] HANSEN B E, SEO B. Testing for two-regime threshold cointegration in vector error-correction models[J]. Journal of Econometrics, 2002, 110(2): 293-318 DOI:10.1016/S0304-4076(02)00097-0
[14] 段礼霞. ARCH模型多变点问题的检验[D]. 杭州: 浙江大学, 2014.
DUAN Lixia.Multiple change point detection of ARCH model[D].Hangzhou:Zhejiang University, 2014.
[15] 赵蕊, 赵文芝, 吕会琴. ARMA(1, 1) 模型多变点的SupF检验[J]. 河南科学, 2015, 9(33): 1482-1487
ZHAO Rui, ZHAO Wenzhi, LYU Huiqin. Multiple change point detection of ARMA(1, 1) model with SupF method[J]. Henan Science, 2015, 9(33): 1482-1487
[16] 陆懋祖. 高等时间序列经济计量学[M]. 上海: 上海人民出版社, 1999.
LU Maozu. Advanced time series econometrics[M]. Shanghai: Shanghai People's Publishing House, 1999.
西安工程大学、中国纺织服装教育学会主办
0

文章信息

赵蕊, 赵文芝, 吕会琴.
ZHAO Rui, ZHAO Wenzhi, LYU Huiqin.
GARCH(1, 1) 模型多变点的SupF检验
Multiple change points detection of GARCH(1, 1) model with SupF method
纺织高校基础科学学报, 2017, 30(1): 63-68
Basic Sciences Journal of Textile Universities, 2017, 30(1): 63-68.

文章历史

收稿日期: 2016-06-18

相关文章

工作空间