一类带交叉扩散项的Variable-Territory捕食-食饵模型
董苗娜, 容跃堂, 王晓丽, 殷珍杰     
西安工程大学 理学院, 陕西 西安 710048
摘要:在齐次Dirichlet边界条件下,研究一类带交叉扩散项的Variable-Territory捕食-食饵模型正解的存在性问题。通过利用极大值原理和分歧理论给出对应的平衡态方程正解的先验估计以及局部分歧正解的存在性条件,并且将局部分歧解延拓为全局分歧解。结果表明,在一定条件下,捕食者和食饵是可以共存的。
关键词捕食-食饵     交叉扩散     正解     全局分歧    
A class of prey-predator model with cross-diffusion and variable-territory type
DONG Miaona, RONG Yuetang, WANG Xiaoli, YIN Zhenjie     
School of Science, Xi'an Polytechnic University, Xi'an 710048, China
Abstract: Under homogeneous Dirichlet boundary conditions, the existence of positive solutions for a predator-prey model with Variable-Territory type and cross-diffusion is researched. By the maximum principle and Crandall-Rabinowitz bifurcation theory, a priori estimate of positive solutions are obtained and the existence of positive solutions to a local bifurcation is proved. Finally, the local bifurcation is developed to the global one, which shows that the predator and the prey can coexist under certain conditions.
Key words: predator-prey model     cross-diffusion     positive solution     global bifurcation    
0 引言

目前,通过捕食食饵模型来探究物种的动力学行为已十分普遍,并有诸多成果[1-4].文献[1]采用扰动理论及分歧理论研究了一类捕食模型正常数平衡态解的分歧与稳定性;文献[2]讨论了一类带Beddington-DeAngelis反应项的捕食-食饵模型在Neumann边界条件下解的性质; 文献[3-4]则利用极大值原理和分歧定理研究了一类捕食模型局部解的延拓.此后有学者提出带交叉扩散项的捕食模型,其在实际上更能准确的反应捕食者和食饵的关系[5-8].文献[9]研究了一类Variable-Territory捕食-食饵模型的动力学性质, 但其并未考虑扩散影响.更多关于该模型的生物学意义可参考文献[10-12].文献[13]加入了扩散项, 研究了模型在齐次Dirichlet边界条件下平衡正解的存在性及稳定性.本文考虑一类带交叉扩散项的Variable-Territory捕食-食饵模型,即

$ \left\{ \begin{array}{l} {u_t} - \Delta \left[ {\left( {1 + \alpha v} \right)u} \right] = u\left( {a - u - \frac{{bv}}{{1 + mu}}} \right),\;\;\;\;\;\;\;x \in \mathit{\Omega ,t > }0,\\ {v_t} - \Delta \left[ {\left( {1 + \beta u} \right)v} \right] = v\left( {d - \frac{v}{u} + \frac{{cu}}{{1 + mu}}} \right),\;\;\;\;\;\;\;x \in \mathit{\Omega ,t > }0,\\ u = v = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega ,t > }0\\ u\left( {x,0} \right) = {u_0}\left( x \right) \ge 0,v\left( {x,0} \right) = {v_0}\left( x \right) \ge 0,\;\;\;\;\;\;\;\;x \in \mathit{\Omega }. \end{array} \right. $ (1)

在齐次Dirichlet边界条件下的解的性质.这里, ΩRn中具有光滑边界∂Ω上的有界开区域, u, v分别表示食饵和捕食者的种群密度, 这里a, b, c, d, m都是正常数, α, β表示交叉扩散系数.

本文主要讨论系统(1) 所对应的平衡态问题

$ \left\{ \begin{array}{l} - \Delta \left[ {\left( {1 + \alpha v} \right)u} \right] = u\left( {a - u - \frac{{bv}}{{1 + mu}}} \right),\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,t > }0,\\ - \Delta \left[ {\left( {1 + \beta u} \right)v} \right] = v\left( {d - \frac{v}{u} + \frac{{cu}}{{1 + mu}}} \right),\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,t > }0,\\ u = v = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega ,t > }0. \end{array} \right. $ (2)

 对于问题(2) 的解(u, v), 若在Ω中, (u, v)只有一个分量为0, 则称其为半平凡解.

1 预备知识

C01 (Ω)={uC01(Ω):u|∂Ω=0}.定义C1 (Ω)中的范数为通常的Banach空间C01 (Ω)中的范数, 令X=C01 (ΩC01 (Ω), 则X是Banach空间.

引理1[13] 设u, vC1(E), u|∂Ω=v|∂Ω=0, u>0, xΩ, $\frac{{\partial u}}{{\partial n}}$<0, x∂Ω, 则存在常数Δ>0, 使得vδu, xE.

由引理1知, 若u, v满足上述条件, 则存在常数Δ1>0, Δ2>0, 使得xΩ时有${\delta _1} \le \frac{v}{u} \le {\delta _2}$.

先考虑特征值问题

$ \left\{ \begin{array}{l} p\Delta \varphi + q\left( x \right)\varphi = \lambda \varphi ,\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ \varphi = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }. \end{array} \right. $ (3)

引理2[14] 假设q(x)∈C(E), p为常数, 问题(3) 的所有特征值满足0<λ1(p, q)<λ2(p, q)≤λ3(p, q)≤…→∞, 相应的特征函数为φ1, φ2, ….由文献[14]可知, λ1(p, q)是简单的.记λ1(1, q)为λ1(q), 则λ1(q)关于q(x)为单调递增的, 且λ1(0) 为λ1.

再考虑边值问题

$ \left\{ \begin{array}{l} - \Delta u = u\left( {a - u} \right),\;\;\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ u\left( x \right) = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }. \end{array} \right. $ (4)

引理3 若a>λ1, 则边值问题(4) 存在惟一正解θa, 并且∀xΩ, 有0<θaa, θa关于a严格递增.即当a>λ1时, 则问题(2) 存在半平凡解(θa, 0).

引理4[15] 若a>λ1, 令La=-Δ+2θa-a为问题(4) 在θa处的线性化算子, 则La的特征值均大于0, 即La可逆.

现令Z=(U, V), 其中

$ U = \left( {1 + \alpha v} \right)u,V = \left( {1 + \beta u} \right)v. $ (5)

因为在R+2={u≥0, v≥0}中, 映射(u, v)→(U, V)是连续可逆的, 故(u, v)≥0与(U, V)≥0之间存在一一对应的关系.因此, 引入和问题(2) 等价的半线性椭圆系统

$ \left\{ \begin{array}{l} - \Delta U = u\left( {a - u - \frac{{bv}}{{1 + mu}}} \right),\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,t > }0,\\ - \Delta V = v\left( {d - \frac{v}{u} + \frac{{cu}}{{1 + mu}}} \right),\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,t > }0,\\ U = V = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega ,t > }0. \end{array} \right. $ (6)

则易知, 当a>λ1时, 问题(6) 就存在半平凡解(θa, 0).

2 正解的先验估计

下面给出正解的先验估计和正解存在的必要条件.

定理1 设a>λ1, 若(U, V)是问题(6) 的任意正解, 那么∀xΩ, 有

$ \begin{array}{l} 0 < u\left( x \right) < U\left( x \right) < M = a + \frac{{{a^2}\alpha \left( {1 + ma} \right)}}{b},\\ 0 < v\left( x \right) < V\left( x \right) < M\left( {1 + \beta M} \right)\left( {d + \frac{{cM}}{{1 + mM}}} \right). \end{array} $

证明 当a>λ1时, 由引理3知θa是边值问题(4) 的唯一正解, 又

$ - \Delta u = u\left( {a - u - \frac{{bv}}{{1 + mu}}} \right) < u\left( {a - u} \right), $

可知u为问题(4) 的下解, 那么根据θa的唯一性及上下解法知0<uθa.

现设∃x0Ω, 使得$U\left( {{x_0}} \right) = \mathop {\max }\limits_{x \in \mathit{\Omega }} U\left( x \right)$.因为

$ 0 \le - \Delta U\left( {{x_0}} \right) = u\left( {{x_0}} \right)\left( {a - u\left( {{x_0}} \right) - \frac{{bv\left( {{x_0}} \right)}}{{1 + mu\left( {{x_0}} \right)}}} \right), $

故有u(x0)<a, 且$v\left( {{x_0}} \right) < \frac{{a\left( {1 + mu\left( {{x_0}} \right)} \right)}}{b}$, 那么

$ U\left( x \right) \le U\left( {{x_0}} \right) = \left[ {1 + \alpha v\left( {{x_0}} \right)} \right]u\left( {{x_0}} \right) < a + \frac{{{a^2}\alpha \left( {1 + ma} \right)}}{b} = M. $

同理, 可得$V\left( x \right) < M\left( {1 + \beta M} \right)\left( {d + \frac{{cM}}{{1 + mM}}} \right)$, 那么由(u, v)与(U, V)之间的关系可知定理成立.

定理2 如果问题(6) 存在正解, 那么a>λ1$d > {\lambda _1}\left( {\frac{{ - c{\theta _a}}}{{1 + m{\theta _a}}}} \right)$.

证明 假设问题(6) 存在正解(U, V), 那么由问题(6) 的第一个方程得

$ - \Delta U = \frac{U}{{1 + \alpha v}}\left( {a - u - \frac{{bv}}{{1 + mu}}} \right) < aU, $

两边同乘以U, 分部积分得

$ \int_\mathit{\Omega } {{{\left| {\nabla U} \right|}^2}{\rm{d}}x} = \left\| {\nabla U} \right\|_2^2 < a\left\| U \right\|_2^2. $

那么由Poincare不等式‖$\nabla $U22λ1U22a>λ1.

设与${\lambda _1}\left( {\frac{{ - c{\theta _a}}}{{1 + m{\theta _a}}}} \right)$对应的特征函数为Z(x), 用Z(x)乘以系统(6) 的第2个方程并积分可得

$ - \int_\mathit{\Omega } {Z\Delta V{\rm{d}}x} = \int_\mathit{\Omega } {Z\frac{V}{{1 + \beta u}}\left( {d - \frac{v}{u} + \frac{{cu}}{{1 + mu}}} \right){\rm{d}}x} , $

右端应用格林公式得

$ - \int_\mathit{\Omega } {Z\Delta V{\rm{d}}x} = - \int_\mathit{\Omega } {V\Delta Z{\rm{d}}x} = \int_\mathit{\Omega } {ZV\left[ {\frac{{c{\theta _a}}}{{1 + m{\theta _a}}} + {\lambda _1}\left( {\frac{{ - c{\theta _a}}}{{1 + m{\theta _a}}}} \right)} \right]{\rm{d}}x} . $

根据定理1的证明知, 0<uθa, 又$\frac{{cu}}{{1 + mu}}$是关于u的递增函数, 即$\frac{{cu}}{{1 + mu}} - \frac{{c{\theta _a}}}{{1 + m{\theta _a}}} < 0$, 所以有

$ \begin{array}{l} \int_\mathit{\Omega } {\left[ {{\lambda _1}\left( {\frac{{ - c{\theta _a}}}{{1 + m{\theta _a}}}} \right) - d} \right]ZV{\rm{d}}x} = \\ \int_\mathit{\Omega } {\left[ {\frac{{ - d\beta u}}{{1 + \beta u}} - \frac{v}{{\left( {1 + \beta u} \right)u}} + \frac{{cu}}{{\left( {1 + \beta u} \right)\left( {1 + mu} \right)}} - \frac{{c{\theta _a}}}{{1 + m{\theta _a}}}} \right]ZV{\rm{d}}x} \le \\ \int_\mathit{\Omega } {\left[ { - \frac{{d\beta u}}{{1 + \beta u}} - \frac{v}{{\left( {1 + \beta u} \right)u}} + \frac{{cu}}{{1 + mu}} - \frac{{c{\theta _a}}}{{1 + m{\theta _a}}}} \right]ZV{\rm{d}}x < 0,} \end{array} $

$d > {\lambda _1}\left( {\frac{{ - c{\theta _a}}}{{1 + m{\theta _a}}}} \right)$.可知系统(6) 没有平凡非负解, 当a>λ1时, 仅有惟一的半平凡解(θa, 0).

3 局部分歧正解的存在性

d为分歧参数, 结合文献[16-17], 利用Crandall-Rabinowitz局部分歧定理, 给出问题(6) 发自半平凡解(θa, 0) 的局部分歧正解的存在性.

定理3 设a>λ1, $d > {\lambda _1}\left( {\frac{{ - c{\theta _a}}}{{1 + m{\theta _a}}}} \right)$, 则(d*; θa, 0)∈X×R+为问题(6) 的一个局部分歧点, 即在(d*; θa, 0) 的领域内系统(6) 至少存在一个正解

$ {\mathit{\Gamma }^ * } = \left\{ {\left( {d\left( s \right);{\theta _a} + s\left( {{\phi ^ * } + {\mathit{\Phi }_1}\left( s \right)} \right),s\left( {{\psi ^ * } + {\mathit{\Psi }_1}\left( s \right)} \right)} \right):0 < s < \delta } \right\}. $

其中d*${\lambda _1}\left( { - \frac{{d(1 + m{\theta _a}) + c{\theta _a}}}{{(1 + m{\theta _a})(1 + \beta {\theta _a})}}} \right) = 0$唯一确定, ψ*>0满足

$ - \Delta {\psi ^ * } - \frac{{d\left( {1 + m{\theta _a}} \right) + c{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}{\psi ^ * } = 0,\;\;x \in \mathit{\Omega }\mathit{.} $

ψ*=0, x∂Ω, ∫Ωψ*2dx=1, $\phi $*C01 (Ω), Δ>0充分小.这里(d(s); Φ1(s), Ψ1(s))是C1连续函数, 满足d(0)=d*, Φ1(0)=0, Ψ1(0)=0, ∫Ωψ1$\phi $*dx=0, 且

$ {\phi ^ * } = L_a^{ - 1}\left( { - \frac{{\alpha {\theta _a}\left( {a - 2{\theta _a}} \right)\left( {1 + m{\theta _a}} \right) + b{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}{\psi ^ * }} \right). $

证明 令$f\left( {u,v} \right) = u\left( {a - u - \frac{{bv}}{{1 + mu}}} \right),g\left( {u,v} \right) = v\left( {d - \frac{v}{u} + \frac{{cu}}{{1 + mu}}} \right),$

其中u, v均为(U, V)的函数, 将问题(6) 在(U, V)=(θa, 0) 处Taylor展开为

$ \left( {\begin{array}{*{20}{c}} {\Delta U}\\ {\Delta V} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} {f\left( {{\theta _a},0} \right)}\\ {g\left( {{\theta _a},0} \right)} \end{array}} \right) + \left[ {\left( {\begin{array}{*{20}{c}} {{f_u}}&{{f_v}}\\ {{g_u}}&{{g_v}} \end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}} {{u_U}}&{{u_V}}\\ {{v_V}}&{{v_U}} \end{array}} \right)} \right]\left| {_{\left( {{\theta _a},0} \right)}} \right. \cdot \left( {\begin{array}{*{20}{c}} {U - {\theta _a}}\\ V \end{array}} \right) +\\ \left( {\begin{array}{*{20}{c}} {{F^1}\left( {d;U - {\theta _a},V} \right)}\\ {{F^2}\left( {d;U - {\theta _a},V} \right)} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right). $

这里, 偏导数为(θa, 0) 处的导数值, Fi(U-θa, V)满足Fi(0, 0)=F(U, V)i (0, 0)=0, i=1, 2.对式(5) 两边同时求导并求逆矩阵, 得

$ \left( {\begin{array}{*{20}{c}} {{u_U}}&{{u_V}}\\ {{v_V}}&{{v_U}} \end{array}} \right)\left| {_{\left( {{\theta _a},0} \right)}} \right. = \frac{1}{{1 + \beta {\theta _a}}}\left( {\begin{array}{*{20}{c}} {1 + \beta {\theta _a}}&{ - \alpha {\theta _a}}\\ 0&1 \end{array}} \right). $

即有

$ \begin{array}{l} \left( {\begin{array}{*{20}{c}} {\Delta U + {\theta _a}\left( {a - {\theta _a}} \right)}\\ {\Delta V} \end{array}} \right) + \\ \left( {\begin{array}{*{20}{c}} {a - 2{\theta _a}}&{\frac{{ - \alpha {\theta _a}\left( {a - 2{\theta _a}} \right)\left( {1 + m{\theta _a}} \right) + b{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}}\\ 0&{\frac{{d\left( {1 + m{\theta _a}} \right) + c{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}} \end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}} {U - {\theta _a}}\\ V \end{array}} \right) +\\ \left( {\begin{array}{*{20}{c}} {{F^1}\left( {d;U - {\theta _a},V} \right)}\\ {{F^2}\left( {d;U - {\theta _a},V} \right)} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right). \end{array} $

又令U=U-θa, 由引理2知ΔUU+θa(a-θa), 则有

$ T\left( {d;\bar U,V} \right) = \left( \begin{array}{l} \Delta \bar U + \left( {a - 2{\theta _a}} \right)\bar U + \frac{{ - \alpha {\theta _a}\left( {a - 2{\theta _a}} \right)\left( {1 + m{\theta _a}} \right) + b{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}V + {F^1}\left( {d;\bar U,V} \right)\\ \Delta V + \frac{{d\left( {1 + m{\theta _a}} \right) + c{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}V + {F^2}\left( {d;\bar U,V} \right) \end{array} \right) = 0, $ (7)

显然T(d; 0, 0)=0.记T(d; U, V)关于(U, V)在(d*; 0, 0) 处的Fréchlet导数是L(d*; 0, 0) 经计算, L(d*; 0, 0)·($\phi $, ψ)T=0等价于

$ \left\{ \begin{array}{l} - \Delta \phi - \left( {a - 2{\theta _a}} \right)\phi = - \frac{{\alpha {\theta _a}\left( {a - 2{\theta _a}} \right)\left( {1 + m{\theta _a}} \right) + b{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}\psi ,\;\;\;\;\;x \in \mathit{\Omega ,}\\ - \Delta \psi - \frac{{{d^ * }\left( {1 + m{\theta _a}} \right) + c{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}\psi = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega },\\ \phi = \psi = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }\mathit{.} \end{array} \right. $

由算子La是可逆的, 可以推算出ψ不恒为零.又${\lambda _1}\left( { - \frac{{{d^*}(1 + m{\theta _a}) + c{\theta _a}}}{{(1 + m{\theta _a})(1 + \beta {\theta _a})}}} \right) = 0$, 故有

$ \psi = {\psi ^ * },\phi = {\phi ^ * } = L_a^{ - 1}\left( { - \frac{{\alpha {\theta _a}\left( {a - 2{\theta _a}} \right)\left( {1 + m{\theta _a}} \right) + b{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}{\psi ^ * }} \right). $

因此, 算子L(d*; 0, 0) 的核空间W(L(d*; 0, 0))=span{U0}, U0=($\phi $*, ψ*)T, 其中

$ {\phi ^ * } = L_a^{ - 1}\left( { - \frac{{\alpha {\theta _a}\left( {a - 2{\theta _a}} \right)\left( {1 + m{\theta _a}} \right) + b{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}{\psi ^ * }} \right). $

现令L*(d*; 0, 0) 为L(d*; 0, 0) 的自伴算子, 类似可得

$ W\left( {{L^ * }\left( {{d^ * };0,0} \right)} \right) = {\rm{span}}\left\{ {{U^ * }} \right\},{U^ * } = {\left( {0,{\psi ^ * }} \right)^{\rm{T}}}. $

由Fredholm选择公理知,

$ {\rm{Range}}\left( {L\left( {d;0,0} \right)} \right) = \left\{ {\left( {\phi ,\psi } \right) \in X:\int_\mathit{\Omega } {\psi {\psi ^ * }{\rm{d}}x} = 0} \right\}, $

因此可得dim W(L(d*; 0, 0))=1, codim R(L(d*; 0, 0))=1.

再令L′(d*; 0, 0)=Dd(U, V)2 T(d*; 0, 0), 下面采用反证法证明

$ L'\left( {{d^ * };0,0} \right) \cdot \left( {{\phi ^ * },{\psi ^ * }} \right) \notin R\left( {L\left( {{d^ * };0,0} \right)} \right). $

假设存在(h, k)∈X, 使得L′(d*; 0, 0)·($\phi $*, ψ*)=L(d*; 0, 0)·(h, k).经计算得

$ L'\left( {{d^ * };0,0} \right) \cdot \left( {{\phi ^ * },{\psi ^ * }} \right) = \left( {\begin{array}{*{20}{c}} 0\\ {\frac{{\left( {1 + m{\theta _a}} \right) + c{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}{\psi ^ * }} \end{array}} \right). $

那么有

$ - \Delta k - \frac{{{d^ * }\left( {1 + m{\theta _a}} \right) + c{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}k = \frac{{\left( {1 + m{\theta _a}} \right) + c{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}{\psi ^ * }. $

两边同时乘以ψ*, 分部积分得

$ \int_\mathit{\Omega } {\frac{{\left( {1 + m{\theta _a}} \right) + c{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}{\psi ^{ * 2}}{\rm{d}}x} = 0, $

由于上式左端大于0, 故矛盾.

最后, L(d*; 0, 0) 和L′(d*; 0, 0) 均是连续的.

因此由文献[16]中的Crandall-Rabinowitz局部分歧定理知, 存在充分小的δ>0及C1连续曲线(d(s):Φ1(s), Ψ1(s)):(-δ, δ)→R×X满足d(0)=d*, Φ1(0)=0, Ψ1(0)=0, 其中X=Z$ \oplus $W(L(d*; 0, 0)), Φ1(s), Ψ1(s)∈Z使得(d(s):U(s), V(s))=(d(s); s($\phi $*+Φ1(s)), s(ψ*+Ψ1(s)))是T(d(s):U(s), V(s))=0的零点, 由于U=U-θa, 因此可得到发自(d*; θa, 0) 的局部分歧正解

$ {\mathit{\Gamma }^*} = \left\{ {\left( {d\left( s \right);{\theta _a} + s\left( {{\phi ^*} + {\mathit{\Phi }_1}\left( s \right)} \right),s\left( {{\psi ^*} + {\mathit{\Psi }_1}\left( s \right)} \right)} \right):0 < s < \delta } \right\}. $
4 局部分歧正解的延拓

下面利用文献[18]中的方法, 将定理3中的局部分歧延拓为全局分歧.

定理4 在定理3的条件下, 系统(6) 发自(d*; θa, 0) 的局部分歧正解Γ*可以沿参数d延拓为全局分歧解.

证明 在式(7) 中, 令K为(-Δ)-1, 则其等价于

$ \left\{ \begin{array}{l} \bar U + K\left[ {\left( {a - 2{\theta _a}} \right)\bar U - \frac{{\alpha {\theta _a}\left( {a - 2{\theta _a}} \right)\left( {1 + m{\theta _a}} \right) + b{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}V} \right] + K{F^1}\left( {d;\bar U,V} \right) = 0,\\ V + K\frac{{d\left( {1 + m{\theta _a}} \right) + c{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}V + K{F^2}\left( {d;\bar U,V} \right) = 0. \end{array} \right. $

定义算子T:R+×XX

$ T\left( {d;\bar U,V} \right) = \\ \left[ \begin{array}{l} K\left[ {\left( {a - 2{\theta _a}} \right)\bar U - \frac{{\alpha {\theta _a}\left( {a - 2{\theta _a}} \right)\left( {1 + m{\theta _a}} \right) + b{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}V} \right] + K{F^1}\left( {d;\bar U,V} \right)\\ K\frac{{d\left( {1 + m{\theta _a}} \right) + c{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}V + K{F^2}\left( {d;\bar U,V} \right) \end{array} \right], $

T(d; U, V)为X上的紧可微算子.令G(d; U, V)=(U, V)T-T(d; U, V), 则GC1函数, 且G(d; 0, 0)=0, 易知G(d; U, V)满足≥0, V≥0的零点恰好是问题(6) 的非负解.要证(d; θa, 0) 是一个全局分歧点, 首先令T′(d)=D(U, V)T(d; 0, 0).设ξ≥1是T′(d)的一个特征值, 相应的特征函数设为(μ, η), 经计算得(μ, η)满足

$ \left\{ \begin{array}{l} - \xi \Delta \mu - \left( {a - 2{\theta _a}} \right)\mu = - \frac{{\alpha {\theta _a}\left( {a - 2{\theta _a}} \right)\left( {1 + m{\theta _a}} \right) + b{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}\eta ,\;\;\;\;\;x \in \mathit{\Omega ,}\\ - \xi \Delta \eta - \frac{{d\left( {1 + m{\theta _a}} \right) + c{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}\eta = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ \mu = \eta = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }\mathit{.} \end{array} \right. $

如果η≡0, 那么由算子(-ξΔ+2θa-a)可逆知μ≡0, 与已知矛盾, 则η不恒为零.令${q_d}\left( x \right) = - \frac{{d(1 + m{\theta _a}) + c{\theta _a}}}{{(1 + m{\theta _a})(1 + \beta {\theta _a})}}$, 则存在i(i=1, 2, …), 使得λi(ξ, qd)=0.

对任意i, λi(ξ, qd)关于ξ≥1, $d > {\lambda _1}\left( {\frac{{ - c{\theta _a}}}{{1 + m{\theta _a}}}} \right)$均严格单调递增, 且λi(ξ, qd)可列为λ1(ξ, qd)<λ2(ξ, qd)≤λ3(ξ, qd)≤…→∞.特别地, λ1(1, qd)=0.此外, 若存在iλi(ξ, qd)=0, 则ξ≥1为T′(d)的特征值.因此ξ≥1为T′(d)的特征值的充分必要条件是存在某个i(i=1, 2, …), 使得λi(ξ, qd)=0.

d>d*, ∀ξ≥1, i≥2, 有λi(ξ, qd)>λ1(ξ, qd*)>λ1(1, qd*)=0.因此, T′(d)没有大于或等于1的特征值.此时i((T(d); ·), 0)=1.

设存在充分小的ε>0, 使得d*-εdd*, λ2(ξ, qd*-ε)≥λ1(ξ, qd*), 则∀ε≥1, i≥2,有λi(ξ, qd)≥λ2(ξ, qd)>λ2(ξ, qd*-ε)≥λ1(ξ, qd*)≥λ1(1, qd*)=0.又由于λ1(1, qd)<λ1(1, qd*)=0, $\mathop {\lim }\limits_{\xi \to \infty } {\lambda _1}\left( {\xi ,{q_d}} \right) = + \infty $, 且λ1(ξ, qd)关于ξ单调递增, 故存在唯一的ξ1>1, 有λ1(ξ1, qd)=0, 从而得到

$ N\left( {{\xi _1}I - T'\left( d \right)} \right) = {\rm{span}}\left\{ {{{\left( {\bar \mu ,\bar \eta } \right)}^{\rm{T}}}} \right\},\dim N\left( {{\xi _1}I - T'\left( d \right)} \right) = 1. $

其中

$ \bar \mu = {\left( {{\xi _1}\Delta + \left( {a - 2{\theta _a}} \right)} \right)^{ - 1}}\left[ {\frac{{\alpha {\theta _a}\left( {a - 2{\theta _a}} \right)\left( {1 + m{\theta _a}} \right) + b{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}\bar \eta } \right], $

η>0满足

$ \left\{ \begin{array}{l} - {\xi _1}\Delta \bar \eta + {q_d}\left( x \right)\bar \eta = 0,\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ \bar \eta = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }\mathit{.} \end{array} \right. $

接下来证明ξ1的代数重数是1, 即只要证明R(ξ1I-T′(ρ))∩M(ξ1I-T′(ρ))=0成立即可.假设∃(μ, η)∈X, 使得(ξ1I-T′(ρ))·(μ, η)=(μ, η)T, 即

$ \left( {\begin{array}{*{20}{c}} {{\xi _1} - {\Delta ^{ - 1}}\left( {a - 2{\theta _a}} \right)}&{{\Delta ^{ - 1}}\frac{{\alpha {\theta _a}\left( {a - 2{\theta _a}} \right)\left( {1 + m{\theta _a}} \right) + b{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}}\\ 0&{{\xi _1} - {\Delta ^{ - 1}}\frac{{d\left( {1 + m{\theta _a}} \right) + c{\theta _a}}}{{\left( {1 + m{\theta _a}} \right)\left( {1 + \beta {\theta _a}} \right)}}} \end{array}} \right) \cdot \left( {\mu ,\eta } \right) = \left( {\begin{array}{*{20}{c}} {\bar \mu }\\ {\bar \eta } \end{array}} \right), $

那么

$ \left\{ \begin{array}{l} \Delta \bar \eta = {\xi _1}\Delta \eta - {q_d}\left( x \right)\eta \;\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ \eta = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }\mathit{.} \end{array} \right. $

两边同乘以η, 积分得

$ \int_\mathit{\Omega } {\bar \eta \Delta \bar \eta {\rm{d}}x} = \int_\mathit{\Omega } {\left( {{\xi _1}\Delta \eta - {q_d}\left( x \right)\eta } \right)\bar \eta {\rm{d}}x} = \int_\mathit{\Omega } {\left( {{\xi _1}\Delta \bar \eta - {q_d}\left( x \right)\bar \eta } \right)\eta {\rm{d}}x} = 0. $

又因为$\Delta \bar \eta = \frac{1}{{{\xi _1}}}{q_d}\left( x \right)\bar \eta $, 所以$\frac{1}{{{\xi _1}}}$Ωqd(x)η2dx=0, 与qd(x)<0矛盾, 所以ξ1的代数重数是1.因此当d*-εdd*时, i((T(d); ·), 0)=-1.

由全局分歧定理知, 定理3中得到的局部分歧正解Γ*可以延拓为全局分歧, 令EΓ*沿d方向的连通分支, 则E为问题(6) 由(d*; θa, 0) 出发的解曲线.令P=P1×P2, 其中

$ {P_1} = \left\{ {u \in C_0^1\left( \mathit{\Omega } \right);u > 0,u \in \mathit{\Omega };\frac{{\partial u}}{{\partial n}} < 0,x \in \partial \mathit{\Omega }} \right\}. $

易得在(d*; θa, 0) 的小邻域内, EPE也包含定理3中给出的局部分歧解, 则E-(d*; θa, 0) 包含系统(6) 发自(d*; θa, 0) 的正解分支, 且必满足下列条件之一:

(A1)E从(d*; θa, 0) 连接另一个分歧点(${\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over d} }$; θa, 0), 其中${\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\frown$}} \over d} }$d*;

(A2)ER+×P内由(d*; θa, 0) 沿参数d延伸到∞.

 由于$\frac{v}{u}$R上的光滑性未知, 因此无法使用文献[16-17]中的判断分歧解分支走向的方法来证明(A1)和(A2)中的哪一个成立.故本定理仅给出定理3中的分歧解可以延拓成全局分歧的结论.

参考文献
[1] 周冬梅, 李艳玲. 一类捕食模型正常数平衡态解的稳定性及分歧[J]. 科学技术与工程, 2010, 10(23): 5615-5622
ZHOU Dongmei, LI Yanling. Stability and bifurcation of positive constant steady-state solution for prey-predator model[J]. Science Technology and Engineering, 2010, 10(23): 5615-5622 DOI:10.3969/j.issn.1671-1815.2010.23.001
[2] 冯孝周, 刘晓挺. 具有B-D反应项的捕食系统解的稳定性[J]. 纺织高校基础科学学报, 2011, 24(1): 74-77
FENG Xiaozhou, LIU Xiaoting. Stability of a prey-predator model with B-D type functional response[J]. Basic Sciences Journal of Textile Universities, 2011, 24(1): 74-77
[3] 何堤, 容跃堂, 王晓丽, 等. 一类具有交叉扩散的捕食-食饵模型的局部分歧[J]. 西安工业大学学报, 2015, 35(11): 872-876
HE Di, RONG Yuetang, WANG Xiaoli, et al. Local bifurcation for a prey-predator model with cross-diffusion[J]. Journal of Xi'an Technological University, 2015, 35(11): 872-876
[4] 容跃堂, 何堤, 张晓晶. 带交叉扩散项的Holling Ⅳ捕食-食饵模型的全局分歧[J]. 纺织高校基础科学学报, 2015, 28(3): 287-293
RONG Yuetang, HE Di, ZHANG Xiaojing. Bifurcation for a prey-predator model with cross-diffusion and Holling type-Ⅳ functional response[J]. Basic Sciences Journal of Textile Universities, 2015, 28(3): 287-293
[5] 马晓丽, 冯孝周. 一类具有交叉扩散的捕食模型的正解的存在性[J]. 安徽大学学报(自然科学版), 2011, 35(5): 26-31
MA Xiaoli, FENG Xiaozhou. The existence of positive solutions for a prey-predator model with cross-diffusion[J]. Journal of Anhui University (Natural Science Edition), 2011, 35(5): 26-31
[6] 马晓丽. 带Ivlev反应项的捕食模型正解的存在性[J]. 纺织高校基础科学学报, 2011, 24(2): 212-216
MA Xiaoli. The existence of positive solutions for a prey-predator model with Ivlev functional response[J]. Basic Sciences Journal of Textile Universities, 2011, 24(2): 212-216
[7] 张航国, 容跃堂, 党苏娟. 一类带有交叉扩散的捕食-食饵模型的全局分歧[J]. 纺织高校基础科学学报, 2013, 26(3): 338-343
ZHANG Hangguo, RONG Yuetang, DANG Sujuan. Global bifurcation for a prey-predator model with cross-diffusion[J]. Basic Sciences Journal of Textile Universities, 2013, 26(3): 338-343
[8] ZHANG Cunhua, YAN Xiangping. Positive solutions bifurcating from zero solution in a Lotka-Volterra competitive system with cross-diusion effects[J]. Appl Math J China Univ, 2011, 26(3): 342-352 DOI:10.1007/s11766-011-2737-z
[9] TURCHIN P, BATZLI G O. Availability of food and the population dynamics of arvicoline rodents[J]. Ecology, 2001, 82(6): 1521-1534 DOI:10.1890/0012-9658(2001)082[1521:AOFATP]2.0.CO;2
[10] DU Yihong, SHI Junping. Some recent results on diffusive predator-prey models in spatially heterogenous environment[J]. Fields Institute Communications, 2006, 48: 1-41
[11] WANG Mingxin, PANG Peter. Qualitative analysis of a diffusive variable-territory prey-predator model[J]. Discrete Contin Dyn Syst, 2009, 23(3): 1061-1072
[12] SKALSKI G T, GILLIAM J F. Functional responses with predator interference:Viable alternatives to the Holling type Ⅱmodel[J]. Ecology, 2001, 82(11): 3083-3092 DOI:10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
[13] 姜洪领, 王利娟, 郭改慧. 一类Variable-Territory捕食模型正解的分歧及稳定性[J]. 武汉大学学报(理学版), 2014, 60(4): 363-368
JANG Hongling, WANG Lijuan, GUO Gaihui. Bifurcation and stability of a prey-predator model with Variable-Territory type[J]. Journal of Wuhan University (Math Edition), 2014, 60(4): 363-368
[14] 叶其孝, 李正元, 王明新. 反应扩散方程引论[M]. 北京: 科学出版社, 2011: 40-56.
YE Qixiao, LI Zhengyuan, WANG Mingxin. Introduction of reaction-diffusion equations[M]. Beijing: Science Press, 2011: 40-56.
[15] 王妮娅, 李艳玲. 一类带收获率的的捕食模型的全局分歧和稳定性[J]. 安徽师范大学学报(自然科学版), 2015, 38(1): 25-30
WANG Niya, LI Yanling. Global bifurcation and stability of a class of predator-prey models with prey harvesting[J]. Journal of Anhui University (Natural Science Edition), 2015, 38(1): 25-30
[16] 戴婉仪, 付一平. 一类交叉扩散系统定态解的分歧与稳定性[J]. 华南理工大学大学报(自然科学版), 2005, 33(2): 99-102
DAI Wanyi, FU Yiping. Bifurcation and stability of the steady-state solutions to a system with cross-diffusion effect[J]. Joumal of South China University of Technology(Natural Science Edition), 2005, 33(2): 99-102
[17] 容跃堂, 董苗娜, 何堤, 等. 一类具有交叉扩散项的捕食-食饵模型的局部分歧[J]. 纺织高校基础科学学报, 2016, 29(4): 443-449
RONG Yuetang, Dongmiaona, HE Di, et al. The local bifurcation for a kind of prey-predator model with cross-diffusion[J]. Basic Sciences Journal of Textile Universitics, 2016, 29(4): 443-449
[18] 冯孝周, 吴建华. 具有饱和与竞争项的捕食系统的全局分歧及稳定性[J]. 系统科学与数学, 2010, 30(7): 979-989
FENG Xiaozhou, WU Jianhua. Global bifurcation and stability for predator-prey model with predator saturation and competition[J]. Journal of System Science and Mathematical Sciences, 2010, 30(7): 979-989
西安工程大学、中国纺织服装教育学会主办
0

文章信息

董苗娜, 容跃堂, 王晓丽, 等.
DONG Miaona, RONG Yuetang, WANG Xiaoli, et al.
一类带交叉扩散项的Variable-Territory捕食-食饵模型
A class of prey-predator model with cross-diffusion and variable-territory type
纺织高校基础科学学报, 2017, 30(1): 48-55
Basic Sciences Journal of Textile Universities, 2017, 30(1): 48-55.

文章历史

收稿日期: 2016-09-21

相关文章

工作空间