一类交叉耦合抛物型方程组解的渐近性态
薛应珍     
西安外事学院 商学院, 陕西 西安 710077
摘要:研究了一类交叉耦合抛物型方程组解的整体存在及爆破问题。首先构造方程组的上、下解,再利用比较定理,得到由幂函数和对数函数完全耦合的退化抛物型方程组解的整体存在及解在有限时刻爆破的充分条件。
关键词交叉抛物型方程组     上下解     比较原理     解的渐近性态    
Asymptotic behavior of a parabolic equations cross coupled terms
XUE Yingzhen     
College of Business, Xi'an International University, Xi'an 710077, China
Abstract: The global existence and blow-up in finite time problems of solutions to a class of a parabolic equations cross coupled terms are studied. By using comparison principle and the upper-lower solution method, the sufficient conditions for the global existence and blow-up in finite time of solution to the fully coupled by power function and logarithmic function degenerate parabolic equations are established.
Key words: parabolic equations cross coupled terms     upper-lower solution     the comparison principle     asymptotic behavior of solutions    
0 引言

本文讨论了下列一类交叉耦合抛物型方程组解的整体存在及有限时刻爆破问题

$ \left\{ \begin{array}{l} {u_t} = \Delta {u^{{m_1}}} + {v^{{p_1}}}\int_\mathit{\Omega } {{{\left( {\ln w} \right)}^{{q_1}}}{\rm{d}}x} ,\;\;\;\;x \in \mathit{\Omega ,t > }0,\\ {v_t} = \Delta {v^{{m_2}}} + {w^{{p_2}}}\int_\mathit{\Omega } {{{\left( {\ln u} \right)}^{{q_2}}}{\rm{d}}x} ,\;\;\;\;x \in \mathit{\Omega ,t > }0,\\ {w_t} = \Delta {w^{{m_3}}} + {u^{{p_3}}}\int_\mathit{\Omega } {{{\left( {\ln v} \right)}^{{q_3}}}{\rm{d}}x} ,\;\;\;\;x \in \mathit{\Omega ,t > }0. \end{array} \right. $ (1)

具有非局部边界流

$ \left\{ \begin{array}{l} u\left( {x,t} \right) = \int_\mathit{\Omega } {{\phi _1}\left( {x,y} \right)u\left( {y,t} \right){\rm{d}}y} ,\;\;\;\;x \in \partial \mathit{\Omega ,t > }0,\\ v\left( {x,t} \right) = \int_\mathit{\Omega } {{\phi _2}\left( {x,y} \right)v\left( {y,t} \right){\rm{d}}y} ,\;\;\;\;x \in \partial \mathit{\Omega ,t > }0,\\ w\left( {x,t} \right) = \int_\mathit{\Omega } {{\phi _3}\left( {x,y} \right)w\left( {y,t} \right){\rm{d}}y} ,\;\;\;\;x \in \partial \mathit{\Omega ,t > }0 \end{array} \right. $ (2)

及连续有界初值

$ \left\{ \begin{array}{l} u\left( {x,0} \right) = {u_0}\left( x \right),\;\;\;\;\;x \in \mathit{\Omega },\\ v\left( {x,0} \right) = {v_0}\left( x \right),\;\;\;\;\;x \in \mathit{\Omega },\\ w\left( {x,0} \right) = {w_0}\left( x \right),\;\;\;\;\;x \in \mathit{\Omega }. \end{array} \right. $ (3)

式中, ΩRN是有界光滑区域, mi>1, pj, qk>0, 且满足当ij, jk, ki时, mipjqk=1, i, j, k=1, 2, 3, ϕi(x, y)(i=1, 2, 3) 是∂Ω×Ω上的非负连续函数, 初值u0(x), v0(x), w0(x)∈C2+α(Ω) (0 < α < 1) 非负, 且在边界上满足相容条件.

方程组(1)~(3) 有明显的实际背景, 可用来描述3种混合物质燃烧的热传导过程, 或者3种化学反应中反应物的反应情况, u, v, w分别表示3种介质的温度或反应物的浓度.许多学者对此类方程组做了大量研究.文献[1]研究了由两个幂函数交叉耦合的抛物型方程组

$ \left\{ \begin{array}{l} {u_t} = \Delta {u^{{m_1}}} - \int_\mathit{\Omega } {{u^\alpha }{v^p}{\rm{d}}x,{v_t}} = \Delta {v^{{m_2}}} - \int_\mathit{\Omega } {{u^q}{v^\beta }{\rm{d}}x,x \in \mathit{\Omega ,t > }0} ,\\ u\left( {x,t} \right) = \int_\mathit{\Omega } {\phi \left( {x,y} \right)u\left( {y,t} \right){\rm{d}}y,v\left( {x,t} \right)} = \int_\mathit{\Omega } {\psi \left( {x,y} \right)v\left( {y,t} \right){\rm{d}}y,x \in \partial \mathit{\Omega ,t > }0} ,\\ u\left( {x,0} \right) = {u_0}\left( x \right),v\left( {x,0} \right) = {v_0}\left( x \right),x \in \mathit{\Omega }, \end{array} \right. $

得到解的整体存在及解在有限时刻爆破的充分条件.文献[2]研究了如下由幂函数和指数函数交叉耦合的抛物型方程组

$ \left\{ \begin{array}{l} {u_t} = \Delta {u^{{m_1}}} - \int_\mathit{\Omega } {{v^\beta }{\rm{exp}}\left( {\alpha u} \right){\rm{d}}x} ,\;\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,t > }0,\\ {v_t} = \Delta {v^{{m_2}}} - \int_\mathit{\Omega } {{u^p}{\rm{exp}}\left( {qv} \right){\rm{d}}x} ,\;\;\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,t > }0,\\ u\left( {x,t} \right) = v\left( {x,t} \right) = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega ,t > }0,\\ u\left( {x,0} \right) = {u_0}\left( x \right),v\left( {x,0} \right) = {v_0}\left( x \right),\;\;\;\;\;x \in \mathit{\Omega }\mathit{.} \end{array} \right. $

得到了解在有限时刻爆破的充分条件及同时爆破的一个必要条件.其他相关结果见文献[3-19].

综上所述, 已有的结果主要研究了由幂函数和指数函数两个变量交叉耦合的抛物型方程组解的整体存在及有限时刻爆破问题, 本文将变量个数推广到3个变量, 且引入了对数函数为耦合变量的抛物型方程组解的整体存在及爆破问题, 使得此类方程组更能广泛地描述热传导和化学反应问题.

1 预备知识

定义1  令T>0, 正函数u(x, t), v(x, t), w(x, t)∈C1, 0(×0, T))∩C2, 1(Ω×[0, T), 且满足

$ \left\{ \begin{array}{l} {{\bar u}_t} = \Delta {{\bar u}^{{m_1}}} + {{\bar v}^{{p_1}}}\int_\mathit{\Omega } {{{\left( {\ln \bar w} \right)}^{{q_1}}}{\rm{d}}x} ,\;\;\;\;x \in \mathit{\Omega ,t > }0,\\ {{\bar v}_t} = \Delta {{\bar v}^{{m_2}}} + {{\bar w}^{{p_2}}}\int_\mathit{\Omega } {{{\left( {\ln \bar u} \right)}^{{q_2}}}{\rm{d}}x} ,\;\;\;\;x \in \mathit{\Omega ,t > }0,\\ {{\bar w}_t} = \Delta {{\bar w}^{{m_3}}} + {{\bar u}^{{p_3}}}\int_\mathit{\Omega } {{{\left( {\ln \bar v} \right)}^{{q_3}}}{\rm{d}}x} ,\;\;\;\;x \in \mathit{\Omega ,t > }0. \end{array} \right. $ (4)

具有非局部边界流

$ \left\{ \begin{array}{l} \bar u\left( {x,t} \right) = \int_\mathit{\Omega } {{\phi _1}\left( {x,y} \right)\bar u\left( {y,t} \right){\rm{d}}y} ,\;\;\;\;x \in \partial \mathit{\Omega ,t > }0,\\ \bar v\left( {x,t} \right) = \int_\mathit{\Omega } {{\phi _2}\left( {x,y} \right)\bar v\left( {y,t} \right){\rm{d}}y} ,\;\;\;\;x \in \partial \mathit{\Omega ,t > }0,\\ \bar w\left( {x,t} \right) = \int_\mathit{\Omega } {{\phi _3}\left( {x,y} \right)\bar w\left( {y,t} \right){\rm{d}}y} ,\;\;\;\;x \in \partial \mathit{\Omega ,t > }0. \end{array} \right. $ (5)

及连续有界初值

$ \left\{ \begin{array}{l} \bar u\left( {x,0} \right) = {{\bar u}_0}\left( x \right),\;\;\;\;\;x \in \mathit{\Omega },\\ \bar v\left( {x,0} \right) = {{\bar v}_0}\left( x \right),\;\;\;\;\;x \in \mathit{\Omega },\\ \bar w\left( {x,0} \right) = {{\bar w}_0}\left( x \right),\;\;\;\;\;x \in \mathit{\Omega }. \end{array} \right. $ (6)

其中, mi>1, pj, qk>0, (i=1, 2, 3) 则称((x, t), (x, t), (x, t))为方程组(1)~(3) 的上解.改变不等号的方向, 类似可以定义下解.

由文献[8, 20], 有如下的比较定理.

引理1  设(u(x, t), v(x, t), w(x, t))和(u(x, t), v(x, t), w(x, t))是方程组(1)~(3) 在×[0, T)上的一对有序上、下解, 则方程组(1)~(3) 存在唯一古典解(u(x, t), v(x, t), w(x, t))在E×[0, T)上有定义且满足

$ \left\{ \begin{array}{l} \underline u \left( {x,t} \right) \le u\left( {x,t} \right) \le \bar u\left( {x,t} \right),\left( {x,t} \right) \in \bar E \times \left[ {0,T} \right),\\ \underline v \left( {x,t} \right) \le v\left( {x,t} \right) \le \bar v\left( {x,t} \right),\left( {x,t} \right) \in \bar E \times \left[ {0,T} \right),\\ \underline w \left( {x,t} \right) \le w\left( {x,t} \right) \le \bar w\left( {x,t} \right),\left( {x,t} \right) \in \bar E \times \left[ {0,T} \right). \end{array} \right. $

引理2  设(u(x, t), v(x, t), w(x, t))>(0, 0, 0) 是(1) 的下解, 如果(u, v, w)在有限时刻爆破, 则方程组(1)~(3) 的解(u(x, t), v(x, t), w(x, t))在有限时刻爆破.

2 解的整体存在

定理1  如果m1m2m3>p1p2p3+q1q2q3+3时, 对于小初值u0(x), v0(x), w0(x), 方程组(1)~(3) 的解整体存在.

证明  设ϕ(x)满足

$ \left\{ \begin{array}{l} - \Delta \phi = {\varepsilon _0},\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ \phi \left( x \right) = \int_\mathit{\Omega } {\tau \left( {x,y} \right){\rm{d}}y} ,\;\;\;\;x \in \partial \mathit{\Omega }\mathit{.} \end{array} \right. $ (7)

式中:τ(x, y)=max{ϕ1(x, y), ϕ2(x, y), ϕ3(x, y), ϕi(x, y)≠0, i=1, 2, 3}是定义在Ω×Ω上的非负连续函数, ε0>0使得0 < ϕ(x)≤1, 记${K_1} = \mathop {\max }\limits_{x \in \mathit{\Omega }} \phi \left( x \right)$, ${K_2} = \mathop {\max }\limits_{x \in \mathit{\Omega }} \phi \left( x \right)$.则对于任意正实数η, 利用拉格朗日中值定理证明可知ln(1+η) < η, 同理,

$ \ln \left( {k{\phi ^{1/{m_i}}}\left( x \right)} \right) = \ln \left[ {1 + \left( {k{\phi ^{1/{m_i}}}\left( x \right) - 1} \right)} \right] < \left( {k{\phi ^{1/{m_i}}}\left( x \right) - 1} \right) < k{\phi ^{1/{m_i}}}\left( x \right). $

u=1/m1(x), v=1/m2(x), w=1/m3(x), 结合式(4)~(7), 则有

$ {{\bar u}_t} - \Delta {{\bar u}^{{m_1}}} - {{\bar v}^{{p_1}}}\int_\mathit{\Omega } {{{\left[ {\ln \bar w} \right]}^{{q_1}}}{\rm{d}}x} = $
$ {a^{{m_1}}}{\varepsilon _0} - {b^{{p_1}}}{\phi ^{{p_1}/{m_2}}}\left( x \right)\int_\mathit{\Omega } {{{\left[ {\ln \left( {c{\phi ^{1/{m_3}}}\left( x \right)} \right)} \right]}^{{q_1}}}{\rm{d}}x} \ge $
$ {a^{{m_1}}}{\varepsilon _0} - {b^{{p_1}}}{\phi ^{{p_1}/{m_2}}}\left( x \right)\int_\mathit{\Omega } {{{\left[ {c{\phi ^{1/{m_3}}}\left( x \right) - 1} \right]}^{{q_1}}}{\rm{d}}x} \ge $
$ {a^{{m_1}}}{\varepsilon _0} - {b^{{p_1}}}{\phi ^{{p_1}/{m_2}}}\left( x \right)\int_\mathit{\Omega } {{{\left[ {c{\phi ^{1/{m_3}}}\left( x \right)} \right]}^{{q_1}}}{\rm{d}}x} = $
$ {a^{{m_1}}}{\varepsilon _0} - {b^{{p_1}}}{c^{{q_1}}}{\phi ^{{p_1}/{m_2}}}\left( x \right)\int_\mathit{\Omega } {{\phi ^{{q_1}/{m_3}}}\left( x \right){\rm{d}}x} \ge $
$ {a^{{m_1}}}{\varepsilon _0} - {b^{{p_1}}}{c^{{q_1}}}K_1^{\left( {{p_1}{m_3} + {q_1}{m_2}} \right)/{m_2}{m_3}}\mathit{\Omega }\mathit{.} $

同理,

$ \begin{array}{l} {{\bar v}_t} - \Delta {{\bar v}^{{m_2}}} - {{\bar w}^{{p_2}}}\int_\mathit{\Omega } {{{\left[ {\ln \bar u} \right]}^{{q_2}}}{\rm{d}}x} \ge {b^{{m_2}}}{\varepsilon _0} - {c^{{p_2}}}{a^{{q_2}}}K_1^{\left( {{p_2}{m_1} + {q_2}{m_3}} \right)/{m_1}{m_3}}\mathit{\Omega },\\ {{\bar w}_t} - \Delta {{\bar w}^{{m_3}}} - {{\bar u}^{{p_3}}}\int_\mathit{\Omega } {{{\left[ {\ln \bar v} \right]}^{{q_3}}}dx} \ge {c^{{m_3}}}{\varepsilon _0} - {a^{{p_3}}}{b^{{q_3}}}K_1^{\left( {{p_3}{m_2} + {q_3}{m_1}} \right)/{m_1}{m_2}}\mathit{\Omega }\mathit{.} \end{array} $

边界:

$ \begin{array}{*{20}{c}} {{{\bar u}_{\partial \mathit{\Omega }}} = a{{\left( {\int_\mathit{\Omega } {\tau \left( {x,y} \right){\rm{d}}y} } \right)}^{1/{m_1}}} \ge a\int_\mathit{\Omega } {\tau \left( {x,y} \right){\rm{d}}y} \ge a\int_\mathit{\Omega } {{\phi _1}\left( {x,y} \right){\rm{d}}y} \ge }\\ {a\int_\mathit{\Omega } {{\phi _1}\left( {x,y} \right){\phi ^{1/{m_1}}}\left( x \right){\rm{d}}y} = \int_\mathit{\Omega } {{\phi _1}\left( {x,y} \right)\bar u\left( {x,y} \right){\rm{d}}y} .} \end{array} $

同理, ${\bar v_{\partial \mathit{\Omega }}} \ge \int_\mathit{\Omega } {{\phi _2}\left( {x, y} \right)} \bar v\left( {x, y} \right){\rm{d}}y, {\bar w_{\partial \mathit{\Omega }}} \ge \int_\mathit{\Omega } {{\phi _3}\left( {x, y} \right)\bar w\left( {x, y} \right){\rm{d}}y} $, ${\bar w_{\partial \mathit{\Omega }}} \ge \int_\mathit{\Omega } {{\phi _3}\left( {x, y} \right)\bar w\left( {x, y} \right){\rm{d}}y} $.

初值:

$ \bar u\left( {x,0} \right) = a{\phi ^{1/{m_1}}}\left( x \right) \ge aK_2^{1/{m_1}},\bar v\left( {x,0} \right) = bK_2^{1/{m_1}},\bar w\left( {x,0} \right) = c{\phi ^{1/{m_3}}}\left( x \right) \ge cK_2^{1/{m_3}}. $

综上可知, 只要存在a, b, c, 使得

$ \begin{array}{l} {a^{{m_1}}}{\varepsilon _0} - {b^{{p_1}}}{c^{{q_1}}}K_1^{\left( {{p_1}{m_3} + {q_1}{m_2}} \right)/{m_2}{m_3}}\mathit{\Omega } \ge 0,\\ {b^{{m_1}}}{\varepsilon _0} - {c^{{p_2}}}{a^{{q_2}}}K_1^{\left( {{p_2}{m_1} + {q_2}{m_3}} \right)/{m_1}{m_3}}\mathit{\Omega } \ge 0,\\ {c^{{m_3}}}{\varepsilon _0} - {a^{{p_3}}}{b^{{q_3}}}K_1^{\left( {{p_3}{m_2} + {q_3}{m_1}} \right)/{m_1}{m_2}}\mathit{\Omega } \ge 0,\\ aK_2^{1/{m_1}} \ge {u_0}\left( x \right),bK_2^{1/{m_1}} \ge {v_0}\left( x \right),cK_2^{1/{m_3}} \ge {w_0}\left( x \right) \end{array} $ (8)

成立, 则(u, v, w)是方程组(1)~(3) 的上解, 由引理1知, 方程组(1)~(3) 的解整体存在.

下证这样的a, b, c存在.令bp1=am1c-q1K1-(p1m3+q1m2)/m2m3Ω-1ε0, 代入式(8) 可得关于a的不等式,即

$ a\frac{{\left( {{m_1}{m_2} - {p_1}{q_2}} \right)\left( {{m_3}{p_1} - {q_1}{q_3}} \right)}}{{\left( {{p_1}{q_2} + {m_2}{q_1}} \right)\left( {{p_1}{p_3} + {m_1}{q_3}} \right)}} \ge K_1^{\frac{{{p_1}{q_2} + {m_2}{q_1}}}{{{m_3}{p_1} + {q_1}{q_3}}}}\left[ {\frac{{{p_3}{m_2} + {q_3}{m_1}}}{{{m_1}{m_2}}} - \frac{{{q_3}\left( {{p_1}{m_3} + {q_1}{m_2}} \right)}}{{{p_1}{m_2}{m_3}}}} \right]\mathit{\Omega }\frac{{\left( {{p_1}{q_2} + {m_2}{q_1}} \right)\left( {{p_1} - {q_3}} \right)}}{{{p_1}\left( {{m_3}{p_1} + {q_1}{q_3}} \right)}}\varepsilon _0^{\frac{{\left( {{p_1}{q_2} + {m_2}{q_1}} \right)\left( {{p_1} - 1} \right)}}{{{p_1}\left( {{m_3}{p_1} + {q_1}{q_3}} \right)}}}. $ (9)

由定理1条件m1m2m3>p1p2p3+q1q2q3+3知, (m1m2-p1q2)(m3p1+q1q3)>(p1q2+m2q1)·(p1p3+m1q3), 只要取a充分大时, 可使得式(9) 成立.另只要a, b, c充分大, 又对于小初值u0(x), v0(x), w0(x), 就可以保证式(8) 的后3个式子成立.定理1证毕.

3 解的有限时刻爆破

讨论解的整体存在问题时, 引入以下两个引理.

引理3  设θ>λ>1, k, l>0, h(t)是问题

$ \left\{ \begin{array}{l} h'\left( t \right) = - h{h^\lambda }\left( t \right) + l{h^\theta }\left( t \right),t > 0,\\ h\left( 0 \right) = {h_0} > 0 \end{array} \right. $ (10)

的正解, 则当h0充分大时, h(t)在有限时刻爆破.

引理4  设λ2>λ1>1, θ2>θ1>1, 则存在如引理3的h(t)是满足

$ \left\{ \begin{array}{l} h'\left( t \right) \le - k{h^{{\lambda _1}}}\left( t \right) + l{h^{{\lambda _2}}}\left( t \right),\\ h'\left( t \right) \le - k{h^{{\theta _1}}}\left( t \right) + l{h^{{\theta _2}}}\left( t \right). \end{array} \right. $

引理3及引理4的证明见文献[1, 16].

定理2  如果2m1m2m3 < p1p2p3-q1q2q3-3, 则当初值u0(x), v0(x), w0(x)充分大时, 方程组(1)~(3) 的解在有限时刻爆破.

证明  设ϕ(x)是满足方程

$ \left\{ \begin{array}{l} - \Delta \phi {\rm{ = }}1,\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ \phi \left( x \right) = 0,\;\;\;\;x \in \partial \mathit{\Omega } \end{array} \right. $ (11)

的解, 则∃C>0, 使得0≤ϕ(x)≤C.令

$ \underline u \left( {x,t} \right) = {h^{{l_1}}}\left( t \right){\phi ^{{l_1}}}\left( x \right),\underline v \left( {x,t} \right) = {h^{{l_2}}}\left( t \right){\phi ^{{l_2}}}\left( x \right),\underline w \left( {x,t} \right) = {h^{{l_3}}}\left( t \right){\phi ^{{l_3}}}\left( x \right). $

其中, l1, l2, l3>1, h(t)待定, 由式(10) 及(11) 可知, 取适当的h(t), 使得hli(t)ϕli(x)>2(i=1, 2, 3), 则对于任意正实数α, 利用拉格朗日中值定理证明可知

$ {\ln ^\alpha }\left[ {{h^{li}}\left( t \right){\phi ^{li}}\left( x \right)} \right] > {h^{ - \alpha li}}\left( t \right){\phi ^{ - \alpha li}}\left( x \right). $

$ \begin{array}{l} k = \max \left\{ {{m_1}\left( {{l_1}{m_1} - 1} \right){C^{{l_1}\left( {{m_1} - 1} \right) - 2}},{m_2}\left( {{l_2}{m_2} - 1} \right){C^{{l_2}\left( {{m_2} - 1} \right) - 2}},{m_3}\left( {{l_3}{m_3} - 1} \right){C^{{l_3}\left( {{m_3} - 1} \right) - 2}}} \right\},\\ l = \min \left\{ {\frac{1}{{{l_1}}}{C^{{l_2}{p_1} - {l_1}}}\int_\mathit{\Omega } {{\phi ^{ - {l_3}{q_1}}}\left( x \right){\rm{d}}x} ,\frac{1}{{{l_2}}}{C^{{l_3}{p_2} - {l_2}}}\int_\mathit{\Omega } {{\phi ^{ - {l_1}{q_2}}}\left( x \right){\rm{d}}x} ,\frac{1}{{{l_3}}}{C^{{l_1}{p_3} - {l_3}}}\int_\mathit{\Omega } {{\phi ^{ - {l_2}{q_3}}}\left( x \right){\rm{d}}x} } \right\}. \end{array} $

$ \begin{array}{l} \underline {{u_t}} - \Delta {\underline u ^{{m_1}}} - {\underline v ^{{p_1}}}\int_\mathit{\Omega } {{{\left[ {\ln \underline w } \right]}^{{q_1}}}{\rm{d}}x} = \\ {l_1}{h^{{l_1} - 1}}\left( t \right){\phi ^{{l_1}}}\left( x \right)h'\left( t \right) - {l_1}{m_1}\left( {{l_1}{m_1} - 1} \right){h^{{l_1}{m_1}}}\left( t \right){\phi ^{{l_1}{m_1} - 2}}\left( x \right)\Delta \phi \left( x \right) - \\ {h^{{l_2}{p_1}}}\left( t \right){\phi ^{{l_2}{p_1}}}\left( x \right)\int_\mathit{\Omega } {{{\ln }^{{q_1}}}\left( {{h^{{l_3}}}\left( t \right){\phi ^{{l_3}}}\left( x \right)} \right){\rm{d}}x} \le \\ {l_1}{h^{{l_1} - 1}}\left( t \right){\phi ^{{l_1}}}\left( x \right)h'\left( t \right) - {l_1}{m_1}\left( {{l_1}{m_1} - 1} \right){h^{{l_1}{m_1}}}\left( t \right){\phi ^{{l_1}{m_1} - 2}}\left( x \right)\Delta \phi \left( x \right) - \\ {h^{{l_2}{p_1}}}\left( t \right){\phi ^{{l_2}{p_1}}}\left( x \right)\int_\mathit{\Omega } {{h^{ - {l_3}{q_1}}}\left( t \right){\phi ^{ - {l_3}{q_1}}}\left( x \right){\rm{d}}x} = \\ {l_1}{h^{{l_1} - 1}}\left( t \right){\phi ^{{l_1}}}\left( x \right)\left[ {h'\left( t \right) + {m_1}\left( {{l_1}{m_1} - 1} \right){h^{{l_1}{m_1} - {l_1} + 1}}\left( t \right){\phi ^{{l_1}{m_1} - {l_1} - 2}}\left( x \right) - } \right.\\ \left. {\frac{{{h^{{l_2}{p_1} - {l_3}{q_1} - {l_1} + 1}}\left( t \right)}}{{{l_1}}}{\phi ^{{l_2}{p_1} - {l_1}}}\left( x \right)\int_\mathit{\Omega } {{\phi ^{ - {l_3}{q_1}}}\left( x \right){\rm{d}}x} } \right] \le \\ {l_1}{h^{{l_1} - 1}}\left( t \right){\phi ^{{l_1}}}\left( x \right)\left[ {h'\left( t \right) + {m_1}\left( {{l_1}{m_1} - 1} \right){h^{{l_1}{m_1} - {l_1} + 1}}\left( t \right){C^{{l_1}{m_1} - {l_1} - 2}} - } \right.\\ \left. {\frac{{{h^{{l_2}{p_1} - {l_3}{q_1} - {l_1} + 1}}\left( t \right)}}{{{l_1}}}{C^{{l_2}{p_1} - {l_1}}}\int_\mathit{\Omega } {{\phi ^{ - {l_3}{q_1}}}\left( x \right){\rm{d}}x} } \right] \le \\ {l_1}{h^{{l_1} - 1}}\left( t \right){\phi ^{{l_1}}}\left( x \right)\left[ {h'\left( t \right) + k{h^{{l_1}{m_1} - {l_1} + 1}}\left( t \right) - l{h^{{l_2}{p_1} - {l_3}{q_1} - {l_1} + 1}}\left( t \right)} \right]. \end{array} $

同理:vtvm2-wp2Ω[lnu]q2dxl2hl2-1(t)ϕl2(x)[h′(t)+khl2m2-l2+1(t)-lhl3p2-l1q2-l2+1(t)], wtwm3-up3Ω[lnv]q3dxl3hl3-1(t)ϕl3(x)[h′(t)+khl3m3-l3+1(t)-lhl1p3-l2q3-l3+1(t)].

综上由引理3的条件可知, 只要存在l1, l2, l3, 使得

$ \left\{ \begin{array}{l} {l_2}{p_1} - {l_3}{q_1} - {l_1} + 1 > {l_1}\left( {{m_1} - 1} \right) + 1\\ {l_3}{p_2} - {l_1}{q_2} - {l_2} + 1 > {l_2}\left( {{m_2} - 1} \right) + 1\\ {l_1}{p_3} - {l_2}{q_3} - {l_3} + 1 > {l_3}\left( {{m_3} - 1} \right) + 1 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} {l_2}{p_1} - {l_3}{q_1} > {l_1}{m_1}\\ {l_3}{p_2} - {l_1}{q_2} > {l_2}{m_2}\\ {l_1}{p_3} - {l_2}{q_3} > {l_3}{m_3} \end{array} \right. $ (12)

成立, 则由引理4知, 存在满足引理3的h(t)使得

$ \begin{array}{l} h'\left( t \right) \le - k{h^{{l_1}\left( {{m_1} - 1} \right) + 1}}\left( t \right) + l{h^{{l_2}{p_1} - {l_3}{q_1} - {l_1} + 1}}\left( t \right),\\ h'\left( t \right) \le - k{h^{{l_2}\left( {{m_2} - 1} \right) + 1}}\left( t \right) + l{h^{{l_3}{p_2} - {l_1}{q_2} - {l_2} + 1}}\left( t \right),\\ h'\left( t \right) \le - k{h^{{l_3}\left( {{m_3} - 1} \right) + 1}}\left( t \right) + l{h^{{l_1}{p_3} - {l_2}{q_3} - {l_3} + 1}}\left( t \right). \end{array} $

所以, ut≤Δum1+∫Ωvp1[lnw]q1dx, vt≤Δvm2+∫Ωwp2[lnu]q2dx, wt≤Δwm3+∫Ωup3[lnv]q3dx.边界:由式(11) 知, ϕ(x)=0, x∂Ω, 有

$ \begin{array}{*{20}{c}} {\underline u \left( {x,t} \right) = 0 \le \int_\mathit{\Omega } {{\phi _1}\left( {x,y} \right)u\left( {y,t} \right){\rm{d}}y,v\left( {x,t} \right)} = 0 \le \int_\mathit{\Omega } {{\phi _2}\left( {x,y} \right)v\left( {y,t} \right){\rm{d}}y,} }\\ {\underline w \left( {x,t} \right) = 0 \le \int_\mathit{\Omega } {{\phi _3}\left( {x,y} \right)w\left( {y,t} \right){\rm{d}}y} .} \end{array} $

初值:当初值u0(x), v0(x), w0(x)充分大时, 有

$ \begin{array}{l} \underline u \left( {x,0} \right) = {h^{{l_1}}}\left( 0 \right){\phi ^{{l_1}}}\left( x \right) \le {u_0}\left( x \right),\\ \underline v \left( {x,0} \right) = {h^{{l_2}}}\left( 0 \right){\phi ^{{l_2}}}\left( x \right) \le {v_0}\left( x \right),\\ \underline w \left( {x,0} \right) = {h^{{l_3}}}\left( 0 \right){\phi ^{{l_3}}}\left( x \right) \le {w_0}\left( x \right). \end{array} $

故(u, v, w)为方程组(1)~(3) 的下解, 而且(u, v, w)在有限时刻爆破.由引理2知, 方程组(1)~(3) 的解在有限时刻爆破.

下证满足式(12) 的l1, l2, l3存在, 取${l_1} = \frac{{{l_2}{p_1}-{l_3}{q_1}}}{{2{m_1}}}$, 代入式(12) 的第3式, 得

$ {l_2} > \frac{{2{m_1}{m_3} + {p_3}{q_1}}}{{{p_1}{p_3} - 2{m_1}{q_3}}}{l_3}. $

再将其代入式(12) 式的第2式, 得

$ \left( {{q_1}{q_2} + 2{m_1}{p_3}} \right){l_3} > \frac{{\left( {{p_1}{q_2} + 2{m_1}{m_2}} \right)\left( {2{m_1}{m_3} + {p_3}{q_1}} \right){l_3}}}{{\left( {{p_1}{p_3} - 2{m_1}{q_3}} \right)}}, $

由定理2条件2m1m2m3 < p1p2p3-q1q2q3-3知, (q1q2+2m1p2)(p1p3-2m1q3)>(p1q2+2m1m2)(2m1m3+p3q1), 即上式成立, 定理2证毕.

参考文献
[1] 王文海. 具非局部源和非局部边界条件抛物方程组解的性质[J]. 中北大学学报(自然科学版), 2012, 33(4): 372-375
WANG Wenhai. Properties of solution to a parabolic system with nonlocal source and nonlocal boundary conditions[J]. Journal of North University of China(Natural Science Edition), 2012, 33(4): 372-375
[2] 王玉兰, 穆春来. 一类具有非局部源的拟线性抛物型方程组的一致爆破模式[J]. 四川大学学报(自然科学版), 2008, 45(5): 7001-3101
WANG Yulan, MU Chunlai. Uniform blow up profiles for a quasilinear parabolic system with nonlocal sources[J]. Journal of Sichuan University(Natural Science Edition), 2008, 45(5): 7001-3101
[3] LIN Zhigui, LIU Yurong. Uniform blow up profiles for diffusion equations with nonlocal source and nonlocal boundary[J]. Acta Mathematics Scientia Ser B, 2004, 24: 443-450
[4] 薛应珍. 一类具有非线性吸收项和边界流的抛物型方程组解的整体存在及爆破问题[J]. 纺织高校基础科学学报, 2013, 26(2): 214-219
XUE Yingzhen. Global existence and blow up problem for a parabolic equations with nonlinear absorption term and boundary flux[J]. Basic Sciences Journal of Textile Universities, 2013, 26(2): 214-219
[5] MU Chunlai, SU Ying. Global existence and blow up for a quasilinear degenerate parabolic system in a cylnder[J]. Applied Mathematics Letters, 2001, 14(6): 715-723 DOI:10.1016/S0893-9659(01)80032-X
[6] WANG Mingxin. Global existence and finite blow up for a reaction-diffusion system[J]. ZAMP, 2000, 51: 160-167 DOI:10.1007/PL00001504
[7] ESCOBEDO M, LEVINE H A. Critical blow up and global existence numbers for a weakly coupled system of reaction diffusion equation[J]. Arch Rat Mech Analysis, 1995, 129: 47-100 DOI:10.1007/BF00375126
[8] PAO C V. Nonlinear parabolic and elliptic equations[M]. London: Plenum Press, 1992.
[9] ZHANG He, KONG Linghua, ZHANG Sining. Propagations of singularities in a parabolic system with coupling nonlocal sources[J]. Science in China Series A:Mathematics, 2009, 52(1): 181-194 DOI:10.1007/s11425-008-0135-7
[10] PASSO D R, LUCKHAUS S. A degenerate diffusion problem not in divergence form[J]. Differential Equation, 1987, 69(1): 1-14 DOI:10.1016/0022-0396(87)90099-4
[11] WANG Shu, WANG Mingxin, XIE Chunhong. A nonlinear degenerate diffusion equation not in divergence form[J]. Z Angew Math Phys, 2000, 51(1): 149-159 DOI:10.1007/PL00001503
[12] LI Yuxiang, DENG Weibing, XIE Chunhong. Global existence and nonexistence for degenerate parabolic systems[J]. Proc Amer Math Soc, 2002, 130(12): 3661-3670 DOI:10.1090/S0002-9939-02-06630-3
[13] DENG Weibing, LI Yuxiang, XIE Chunhong. Existence and nonexistence of global solution of some non-local degenerate parabolic system[J]. Proc Amer Math Soc, 2003, 131(5): 1573-1582 DOI:10.1090/S0002-9939-02-06866-1
[14] 张岩, 宋小军. 一类带非局源的退化抛物方程组解的整体存在与爆破(英文)[J]. 西南大学学报(自然科学版), 2008, 30(9): 80-84
ZHANG Yan, SONG Xiaojun. Global existence and blow-up for a degenerate parabolic systems with nonlocal source[J]. Journal of Southwest University(Natural Science Edition), 2008, 30(9): 80-84
[15] BUDDAL C J, DOLD J W, GALAKTIONOV V A. Global blow-up for a semilinear heat equation on a subspace[J]. Proceedings of the Royal Society of Edinburgh:Section A Mathematics, 2015, 145(5): 893-923 DOI:10.1017/S0308210515000256
[16] 党苏娟, 容跃堂, 张航国. 非局部反应扩散方程组解的整体存在与爆破[J]. 纺织高校基础科学学报, 2013, 26(4): 481-485
DANG Sujuan, RONG Yuetang, ZHANG Hangguo. Global existence and blow-up of solution for nonlocal reaction diffusion equtions[J]. Basic Sciences Journal of Textile Universities, 2013, 26(4): 481-485
[17] 樊彩虹, 李平, 郭晓霞, 等. 具非局部源退化抛物系统解的整体存在与爆破[J]. 内蒙古师范大学学报(自然科学版), 2014, 43(6): 680-688
FAN Caihong, LI Ping, GUO Xiaoxia, et al. Global existence and blow-up for the solutions of a degenerate parabolic system with nonlocal sources[J]. Journal of Inner Mongolia Normal University(Natural Science Edition), 2014, 43(6): 680-688
[18] 樊彩虹, 容跃堂. 一类带非局部源的反应扩散方程组解的整体存在[J]. 纺织高校基础科学学报, 2009, 22(2): 172-176
FAN Caihong, RONG Yuetang. Global existence for a degenerate reaction-diffusion system with nonlocal sources[J]. Basic Sciences Journal of Textile Universities, 2009, 22(2): 172-176
[19] ROSSI J D, WOLANSKI N. Blow-up vs.global existence for a semilinear reaction-diffusion system in a bounded domain[J]. Comm Partial Differential Equation, 1995, 20(2): 1991-2004
[20] 叶其孝, 李正元, 王明新, 等. 反应扩散方程引论[M]. 2版. 北京: 科学出版社, 2011.
YE Qixiao, LI Zhengyuan, WANG Mingxin, et al. Introductory for reaction-diffusion system[M]. 2nd edition. Beijing: Science Press, 2011.
西安工程大学、中国纺织服装教育学会主办
0

文章信息

薛应珍.
XUE Yingzhen.
一类交叉耦合抛物型方程组解的渐近性态
Asymptotic behavior of a parabolic equations cross coupled terms
纺织高校基础科学学报, 2017, 30(1): 42-47, 55
Basic Sciences Journal of Textile Universities, 2017, 30(1): 42-47, 55.

文章历史

收稿日期: 2016-12-19

相关文章

工作空间