一类具有交叉扩散的捕食-食饵模型的正解
张丽霞, 李艳玲     
陕西师范大学 数学与信息科学学院, 陕西 西安 710119
摘要:研究一类在Dirichlet边界条件下带有交叉扩散和修正的Leslie-Gower与Holling Ⅱ反应项的捕食-食饵模型。分别利用极大值原理、Poincaré不等式和度理论,得到正解的先验估计以及正解存在的必要条件和充分条件.进而得出,当正解存在时,参数a>λ1b>λ1;当参数a>λ1${\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right)\left\langle {0,b} \right\rangle {\lambda _1}$${\lambda _1}\left( {\frac{{c{k_2}{\theta _b} - ad{k_1}}}{{d{k_1} + d{k_1}{k_2}{\theta _b}}}} \right)$ < 0时,正解存在。
关键词捕食-食饵模型     正解     度理论    
Positive solutions of a predator-prey model with cross-diffusion
ZHANG Lixia, LI Yanling     
College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, China
Abstract: A predator-prey model with cross-diffusion and modified Leslie-Gower type and Holling Ⅱ functional response under Dirichlet boundary conditions is studied.A priori estimate of positive solutions, a necessary and sufficient condition of the existence for positive solutions are derived by making use of maximum principle, Poincaré's inequality and degree theory.It is shown that if the models have positive solutions, then a>λ1, b>λ1; while a>λ1, ${\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right)\left\langle {0,b} \right\rangle {\lambda _1}$, ${\lambda _1}\left( {\frac{{c{k_2}{\theta _b} - ad{k_1}}}{{d{k_1} + d{k_1}{k_2}{\theta _b}}}} \right)$ < 0, the models have positive solutions.
Key words: predator-prey model     positive solutions     degree theory    
0 引言

近年来, 随着种群生态学的发展, 种群生物模型(尤其是捕食-食饵模型)引起了国内外学者的极大关注.文献[1]讨论了一类具有修正的Leslie-Gower与Holling Ⅱ反应函数的不带交叉扩散的捕食-食饵模型解的有界性和全局渐近稳定性; 文献[2]利用锥上不动点理论和线性稳定性理论研究了一类具有Holling Ⅲ型捕食-食饵模型平衡态正解的存在性与稳定性; 文献[3]利用极值原理和分歧理论研究了一类在Dirichlet边界条件下带有广义Holling Ⅲ型功能反应项的修正型Leslie捕食食饵模型的平衡态正解的局部分歧以及全局分歧.但以上研究都没有考虑到种群间的交叉扩散的影响.事实上, 在某些生态系统中, 种群间的相互影响在种群扩散中也起着非常重要的作用[4-14].据此研究具有Leslie-Gower与Holling Ⅱ反应函数的带有交叉扩散的捕食-食饵模型将尤为重要.对于无交叉扩散的情形, 文献[15-16]主要讨论了其正解的存在性, 唯一性, 稳定性以及其脉冲效应.本文在文献[15-16]的基础上考察如下带有交叉扩散和修正的Leslie-Gower与Holling Ⅱ反应项的捕食-食饵模型

$ \left\{ \begin{array}{l} - \Delta \left[ {\left( {1 + av} \right)u} \right] = u\left( {a - u - cv/\left( {{k_1} + u} \right)} \right),\;\;\;\;\;x \in \mathit{\Omega ,}\\ - \Delta \left[ {\left( {1 + \beta u} \right)v} \right] = v\left( {b - bv/\left( {{k_2} + u} \right)} \right),\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ u = v = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }\mathit{.} \end{array} \right. $ (1)

其中Δ为Laplace算子, ΩRn中具有光滑边界的有界开区域, u, v分别为食饵和捕食者的浓度, a, m, k1, b, c, k2都是正常数, αβ分别是食饵和捕食者的扩散系数, 其他生物意义参考文献[1].

$ 令U = \left( {1 + av} \right)u,V = \left( {1 + \beta u} \right)v. $

因为$\frac{{\partial \left( {U, V} \right)}}{{\partial \left( {u, v} \right)}} = \left( {1 + \alpha v} \right)\left( {1 + \beta u} \right)-\alpha \beta uv = 1 + \beta u + \alpha v > 0$, 所以在R+2={u≥0, v≥0}上, 映射(u, v)→(U, V)是连续可逆的, 故(u, v)和(U, V)之间存在一一对应关系, 那么式(1) 等价于如下椭圆系统

$ \left\{ \begin{array}{l} - \Delta U = u\left( {a - u - \frac{{cv}}{{{k_1} + u}}} \right),\;\;\;\;\;x \in \mathit{\Omega ,}\\ - \Delta V = v\left( {b - \frac{{dv}}{{{k_2} + u}}} \right),\;\;\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ U = V = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }\mathit{.} \end{array} \right. $ (2)

其中, (u, v)为(U, V)的函数.显然式(2) 存在平凡解(0, 0).此外, 若a>λ1, 则式(2) 存在半平凡解(U*, V*)=(θa, 0);若b>λ1, 则式(2) 存在半平凡解$\left( {{U^*}, {V^*}} \right) = \left( {0, \frac{{{k_2}}}{d}{\theta _b}} \right)$.本文主要利用极大值原理和度理论讨论方程(2) 正解的先验估计以及正解的存在性.

1 预备知识

考察如下特征值问题[3]

$ - \Delta \varphi + q\left( x \right)\varphi = \lambda \varphi ,x \in \mathit{\Omega ,}\varphi \mathit{ = }0,x \in \partial \mathit{\Omega }\mathit{.} $ (3)

$q\left( x \right) \in C\left( {\mathit{\bar \Omega }} \right)$, 则式(3) 的所有特征值满足

$ 0\mathit{ < }{\lambda _1}\left( q \right) < {\lambda _2}\left( q \right) \le {\lambda _3}\left( q \right) \le \cdots \to \infty . $ (4)

相应的特征函数为φ1, φ2, …, 其主特征值

$ {\lambda _1}\left( q \right) = \mathop {\inf }\limits_{\varphi \in H_0^1,\left\| \varphi \right\| = 1} \left\{ {{{\left\| {\nabla \varphi } \right\|}^2} + \int_\mathit{\Omega } {q\left( x \right){\varphi ^2}{\rm{d}}x} } \right\}. $ (5)

是单重的.而且, 有如下比较定理:若q1q2, 则λj(q1)≥λj(q2), 且若${q_1}\not \equiv {q_2}$, 则λj(q1)>λj(q2), 记λ1=λ1(0), 相应的特征函数记为φ1>0.其中‖·‖表示L2(Ω)范数.

考虑单个方程

$ - \Delta u + q\left( x \right)u = u\left( {a - u} \right),x \in \mathit{\Omega },u = 0,x \in \mathit{\Omega }. $ (6)

由文献[3]和[17]知:若aλ1(q(x)), 则u=0是式(6) 的唯一非负解; 而当a>λ1(q(x))时, 式(6) 存在唯一正解.当q(x)=0, a>λ1时把这个唯一正解记为θa.特别地, θa关于a严格单调递增且连续可微.∀xΩ, 有0 < θa < a.

E是一个Banach空间, WE称为一个楔, 如果W是一个非空闭凸集, 并且∀β≥0, 都有βWW.若W是楔, 并且W∩(-W)=0, 则WE中的一个锥.设WE是一个楔, 对于yW, 定义

$ {W_y} = \left\{ {x \in E:\exists r > 0,{\rm{s}}.{\rm{t}}.y + rx \in W} \right\},{S_y} = \left\{ {x \in {{\bar W}_y}\left| { - x \in {{\bar W}_y}} \right.} \right\}. $

引理1[18]  令q(x)∈C(Ω), 且u≥0, μ∈0(xΩ).则有

(ⅰ)如果0∈-Δφ+q(x)φ≤0, 那么λ1(q(x)) < 0;

(ⅱ)如果0∈-Δφ+q(x)φ≥0, 那么λ1(q(x))>0;

(ⅲ)如果-Δφ+q(x)φ≡0, 那么λ1(q(x))=0.

r(T)是Banach空间上的线性算子T的谱半径.

引理2[15]  令q(x)∈C(Ω), P为正常数使得∀xΩ, -q(x)+P>0.那么以下结论成立:

(ⅰ) λ1(q(x)) < 0$\Leftrightarrow $r[(-Δ+P)(-q(x)+P)]>1;

(ⅱ) λ1(q(x))>0$\Leftrightarrow $r[(-Δ+P)(-q(x)+P)] < 1;

(ⅲ) λ1(q(x))=0$\Leftrightarrow $r[(-Δ+P)(-q(x)+P)]=1.

引理3[2, 18]  设WE中的一个楔, A:WW是紧映射, 且存在不动点y0W, 使得Ay0=y0.令L=A′(y0)是Ay0处的Fréchet导数, 则L:Wy0Wy0.如果I-LE上可逆, 并且

(ⅰ) LWy0上具有α性质, 则indexW(A, y0)=0;

(ⅱ) LWy0上不具有α性质, 则indexW(A, y0)=(-1)σ, 其中σL大于1的特征值的代数重数之和.

则称L具有α性质, 是指如果存在t∈(0, 1), wWy\Sy, 使得w-tLwSy, Wy, Sy的定义如前面所述.

2 先验估计

定理1  设a, b>λ1.若(U, V)是式(2) 的任一正解,则∀xΩ, 有

$ 0 < u\left( x \right) < U\left( x \right) \le M = M\left( a \right): = \left[ {1 + \frac{{a\alpha }}{c}\left( {{k_1} + a} \right)} \right]a, $
$ 0 < v\left( x \right) < V\left( x \right) \le R = R\left( b \right): = \frac{b}{d}\left( {1 + \beta M} \right)\left( {{k_2} + M} \right). $

证明  设存在x1Ω, 使得$U\left( {{x_1}} \right) = \mathop {\max }\limits_{{x_1} \in \mathit{\bar \Omega }} U\left( x \right)$.由于

$ 0 \le - \Delta U\left( {{x_1}} \right) = u\left( {{x_1}} \right)\left( {a - u\left( {{x_1}} \right) - \frac{{cv\left( {{x_1}} \right)}}{{{k_1} + u\left( {{x_1}} \right)}}} \right), $

从而有

$ u\left( {{x_1}} \right) < a,v\left( {{x_1}} \right) < \frac{a}{c}\left( {{k_1} + u\left( {{x_1}} \right)} \right). $

因此有

$ U\left( x \right) \le U\left( {{x_1}} \right) = \left( {1 + \alpha v\left( {{x_1}} \right)} \right)u\left( {{x_1}} \right) < \left[ {1 + \frac{{a\alpha }}{c}\left( {{k_1} + u\left( {{x_1}} \right)} \right)} \right]u\left( {{x_1}} \right) < \left[ {1 + \frac{{a\alpha }}{c}\left( {{k_1} + a} \right)} \right]a. $

同理可得

$ V\left( x \right) \le V\left( {{x_2}} \right) = \left( {1 + \beta u\left( {{x_2}} \right)} \right)v\left( {{x_2}} \right) < \left( {1 + \beta u\left( {{x_2}} \right)} \right) \cdot \frac{b}{d}\left( {{k_2} + u\left( {{x_2}} \right)} \right) < \frac{b}{d}\left( {1 + \beta M} \right)\left( {{k_2} + M} \right). $

定理2  如果aλ1bλ1时, 那么式(2) 没有正解.

证明  假设式(2) 存在正解(U, V), 由式(2) 关于U的方程可得

$ - \Delta U = \frac{U}{{1 + \alpha v}}\left( {a - u - \frac{{cv}}{{{k_1} + u}}} \right) < aU. $

两边同时乘以U, 结合格林公式得

$ \int_\mathit{\Omega } {{{\left| {\nabla U} \right|}^2}{\rm{d}}x} = \left\| {\nabla U} \right\|_2^2 < a\left\| U \right\|_2^2. $

由Poincaré不等式‖∇U22λ1U22a>λ1.同理可得b>λ1.因此当aλ1bλ1时, 式(2) 没有正解.

3 正解的存在性

引入以下记号:E=C0(Ω)⊕C0(Ω), 其中C0(Ω)={uC(Ω):u=0, x∈∂Ω}; W=KK, 其中K={uC0(Ω):u(x)≥0, xΩ}; D={(u, v)∈E:uM+1, VR+1};D′=(intD)∩W.

定义算子A:D′→W,即

$ \begin{array}{*{20}{c}} {A\left( {U,V} \right) = {{\left( { - \Delta + P} \right)}^{ - 1}}\left( {\begin{array}{*{20}{c}} {U\left\{ {P + \frac{1}{{1 + \alpha v}}\left( {a - u - \frac{{cv}}{{{k_1} + u}}} \right)} \right\}}\\ {V\left\{ {P + \frac{1}{{\beta u}}\left( {b - \frac{{du}}{{{k_2} + u}}} \right)} \right\}} \end{array}} \right) = }\\ {{{\left( { - \Delta + P} \right)}^{ - 1}}\left( {\begin{array}{*{20}{c}} {F\left( {u,v} \right) + PU}\\ {G\left( {u,v} \right) + PV} \end{array}} \right),} \end{array} $

其中

$ F\left( {u,v} \right) = u\left( {a - u - \frac{{cv}}{{{k_1} + u}}} \right),G\left( {u,v} \right) = v\left( {b - \frac{{du}}{{{k_2} + u}}} \right). $

P是充分大的常数, 使得

$ P + \frac{1}{{1 + \alpha v}}\left( {a - u - \frac{{cv}}{{{k_1} + u}}} \right) > 0,P + \frac{1}{{1 + \beta u}}\left( {b - \frac{{du}}{{{k_2} + u}}} \right) > 0 $

由极大值原理知(-Δ+p)-1是一个紧线性正映射, A全连续且Fréchet可导.则A的正不动点就是方程(2) 的正解.显然式(2) 存在平凡解(0, 0), 此外, 若a>λ1, 则式(2) 存在半平凡解(U*, V*)=(θa, 0);若b>λ1, 则式(2) 存在半平凡解(U*, V*)=$\left( {0, \frac{{{k^2}}}{d}{\theta _b}} \right)$.

$ A'\left( {U,V} \right) = {\left( { - \Delta + P} \right)^{ - 1}}\left[ {P + \left( {\begin{array}{*{20}{c}} {{F_u}}&{{F_v}}\\ {{G_u}}&{{G_v}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{u_U}}&{{u_V}}\\ {{v_U}}&{{v_U}} \end{array}} \right)} \right], $

其中

$ \left( {\begin{array}{*{20}{c}} {{F_u}}&{{F_v}}\\ {{G_u}}&{{G_v}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {a - 2u - \frac{{c{k_1}v}}{{{{\left( {{k_1} + u} \right)}^2}}}}&{ - \frac{{cv}}{{{k_1} + u}}}\\ {\frac{{d{v^2}}}{{{{\left( {{k_2} + u} \right)}^2}}}}&{b - \frac{{2dv}}{{{k^2} + u}}} \end{array}} \right), $
$ \left( {\begin{array}{*{20}{c}} {{u_U}}&{{u_V}}\\ {{v_U}}&{{v_U}} \end{array}} \right) = {\left( {\begin{array}{*{20}{c}} {1 + \alpha v}&{\alpha u}\\ {\beta v}&{1 + \beta u} \end{array}} \right)^{ - 1}} = \frac{1}{{1 + \alpha v + \beta u}}\left( {\begin{array}{*{20}{c}} {1 + \beta u}&{ - \alpha u}\\ { - \beta v}&{1 + \alpha v} \end{array}} \right), $

因此可以得到

$ A'\left( {U,V} \right) = {\left( { - \Delta + P} \right)^{ - 1}}\left[ {P + \frac{1}{{1 + \alpha v + \beta u}}\left( {\begin{array}{*{20}{c}} {a - 2u - \frac{{c{k_1}}}{{v{{\left( {{k_1} + u} \right)}^2}}}}&{ - \frac{{cv}}{{{k_1} + u}}}\\ {\frac{{d{v^2}}}{{{{\left( {{k_2} + u} \right)}^2}}}}&{b - \frac{{2dv}}{{{k^2} + u}}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {1 + \beta u}&{ - \alpha u}\\ { - \beta v}&{1 + \alpha v} \end{array}} \right)} \right]. $

引理4  假设a>λ1, 则有

(ⅰ)若b≠0, 则indexW(A, (0, 0))=0;

(ⅱ)若${\lambda _1}\left( {-\frac{b}{{1 + \beta {\theta _a}}}} \right) < 0$, 则indexW(A, (θa, 0))=0;若${\lambda _1}\left( {-\frac{b}{{1 + \beta {\theta _a}}}} \right) > 0$, 则indexW(A, (θa, 0))=1.

证明  (ⅰ)令L=A′(0, 0), 其中A′(0, 0) 是A在(0, 0) 处的Fréchet导数.直接计算得W(0, 0)=W, S(0, 0)=(0, 0),

$ L = {\left( { - \Delta + P} \right)^{ - 1}}\left( {\begin{array}{*{20}{c}} {a + P}&0\\ 0&{b + P} \end{array}} \right). $

先证明I-LW(0, 0)上可逆.如果存在(ξ, η)∈W(0, 0), 使得L(ξ, η)T=(ξ, η)T,则有-Δξ=, xΩ, ξ=0, x∈∂Ω.如果ξ>0, 则a=λ1, 矛盾.故ξ≡0.同理η≡0.这说明I-LW(0, 0)上可逆.

接着证明L具有α性质.因为a>λ1, 由引理2知, ra=r[(-Δ+P)-1(a+P)]>1, 同时ra是算子(-Δ+P)-1(a+P)的主特征值, 对应的特征函数φ>0, 取t0=ra-1, 则0 < t0 < 1且(I-t0L)(φ, 0)T=(0, 0)TS(0, 0).因此L具有α性质.由引理3知indexW(A, (0, 0))=0.

(ⅱ)若${\lambda _1}\left( {-\frac{b}{{1 + \beta {\theta _a}}}} \right) < 0$, 令L=A′(θa, 0), 其中A′(θa, 0) 是A在(θa, 0) 处的Fréchet导数.直接计算得W(θa, 0)=C0(Ω)⊕K, S(θa, 0)=C0(Ω)⊕(0, 0), W(θa, 0)\S(θa, 0)=C0(Ω)⊕{K\0},

$ L = \left( { - \Delta + P} \right)\left( {\begin{array}{*{20}{c}} {P + a - 2{\theta _a}}&{ - \frac{{\alpha {\theta _a}\left( {a - 2{\theta _\alpha }} \right)\left( {{k_1} + {\theta _a}} \right) + c{\theta _a}}}{{\left( {1 + \beta {\theta _a}} \right)\left( {{k_1} + {\theta _a}} \right)}}}\\ 0&{P + \frac{b}{{1 + \beta {\theta _a}}}} \end{array}} \right). $

首先证明I-LW(θa, 0) 上可逆.假定存在(ξ, η)∈W(θa, 0), 使L(ξ, η)T=(ξ, η)T.则有

$ \left\{ \begin{array}{l} - \Delta \xi = \left( {a - 2{\theta _a}} \right)\xi - \frac{{\alpha {\theta _a}\left( {a - 2{\theta _\alpha }} \right)\left( {{k_1} + {\theta _a}} \right) + c{\theta _a}}}{{\left( {1 + \beta {\theta _a}} \right)\left( {{k_1} + {\theta _a}} \right)}}\eta ,\;\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ - \Delta \eta = \frac{b}{{1 + \beta {\theta _a}}}\eta ,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ \xi = \eta = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }\mathit{.} \end{array} \right. $ (7)

如果η>0, 由式(7) 的第2个方程知${\lambda _1}\left( {-\frac{b}{{1 + \beta {\theta _a}}}} \right) = 0$, 与已知条件(ⅱ)矛盾.故η≡0.把η≡0代入式(7) 第1个方程得

$ \left\{ \begin{array}{l} - \Delta \xi = \left( {a - 2{\omega _a}} \right)\xi ,\;\;\;x \in \mathit{\Omega ,}\\ \xi = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }\mathit{.} \end{array} \right. $ (8)

如果ξ≠0, 则λ1(2θa-a)≤0.由特征值的相关性质知λ1(2θa-a)>λ1(θa-a)=0, 矛盾.故ξ≡0, 故I-LW(θa, 0)上可逆.

接着证明LW(θa, 0)具有α性质.因为${\lambda _1}\left( {-\frac{b}{{1 + \beta {\theta _a}}}} \right) < 0$, 由引理2有r(T)>1, 其中T:=(-Δ+P)$\left( {P + \frac{b}{{2 + \beta {\theta _a}}}} \right)$, 同时r(T)是算子T的主特征值, 对应的特征函数φ∈{K\0}.取t=rT-1, 则0 < t < 1, (0, φ)∈W(θa, 0)\S(θa, 0), 且

$ \begin{array}{l} \left( {I - tL} \right)\left( {\begin{array}{*{20}{c}} 0\\ \varphi \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {t{{\left( { - \Delta + P} \right)}^{ - 1}}\frac{{\alpha {\theta _a}\left( {a - 2{\theta _a}} \right)\left( {{k_1} + {\theta _a}} \right) + c{\theta _a}}}{{\left( {1 + \beta {\theta _a}} \right)\left( {{k_1} + {\theta _a}} \right)}}\varphi }\\ {\varphi - t{{\left( { - \Delta + P} \right)}^{ - 1}}\left( {P + \frac{b}{{1 + \beta {\theta _a}}}} \right)\varphi } \end{array}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {\begin{array}{*{20}{c}} {t{{\left( { - \Delta + P} \right)}^{ - 1}}\frac{{\alpha {\theta _a}\left( {a - 2{\theta _a}} \right)\left( {{k_1} + {\theta _a}} \right) + c{\theta _a}}}{{\left( {1 + \beta {\theta _a}} \right)\left( {{k_1} + {\theta _a}} \right)}}\varphi }\\ 0 \end{array}} \right). \end{array} $

故(I-tL)(0, φ)TS(θa, 0), 因此LW(θa, 0)上具有α性质.由引理3知, indexW(A, (θa, 0))=0.

由前面的证明知I-LW(θa, 0)上可逆.现在证明LW(θa, 0)上不具有α性质.因为${\lambda _1}\left( {-\frac{b}{{1 + \beta {\theta _a}}}} \right) > 0$, 由引理2, 3知, 如果LW(θa, 0)上具有α性质, 则存在0 < t < 1和(φ1, φ2)∈W(θa, 0)\S(θa, 0), 使得(I-tL)(φ1, φ2)TS(θa, 0), 于是${\varphi ^2}-t{\left( {-\Delta + P} \right)^{-1}}\left( {P + \frac{b}{{1 + \beta {\theta _a}}}} \right){\varphi _2} = 0$.又因为φ2∈{K\0}.所以t-1是算子T的一个特征值, 此与r(T) < 1, 矛盾.因此LW(θa, 0)上不具有α性质.根据引理3, indexW(A, (θa, 0))=(-1)σ.其中σL的所有大于1的特征值的代数重数之和.

假设1/μL的一个特征值, 对应的特征函数记为(ξ, η), 有

$ \left\{ \begin{array}{l} - \Delta \xi + P\xi = \mu \left( {\left( {P + a - 2{\theta _a}} \right)\xi - \frac{{\alpha {\theta _a}\left( {a - 2{\theta _a}} \right)\left( {{k_1} + {\theta _a}} \right) + c{\theta _a}}}{{\left( {1 + \beta {\theta _a}} \right)\left( {{k_1} + {\theta _a}} \right)}}\eta } \right),\;\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ - \Delta \eta + P\eta = \mu \left( {P + \frac{b}{{1 + \beta {\theta _a}}}} \right)\eta ,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ \xi = \eta = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }\mathit{.} \end{array} \right. $ (9)

如果η$\not{\equiv }$0, 则由式(9) 第2个方程知

$ 0 = {\lambda _j}\left( {P\left( {1 - \mu } \right) + \mu \left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right)} \right) \ge {\lambda _1}\left( {P\left( {1 - \mu } \right) + \mu \left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right)} \right) > {\lambda _1}\left( { - \frac{b}{{1 + \beta {\theta _a}}}} \right). $

对于j≥1, 此与${\lambda _1}\left( {-\frac{b}{{1 + \beta {\theta _a}}}} \right) > 0$, 矛盾.故η≡0.将η=0代入式(9) 的第1个方程.如果ξ∈0, 则有0=λj(P(1-μ)-μ(a-2θa))≥λ1(P(1-μ)-μ(a-2θa))>λ1(-μ(a-θa))>λ1(-(a-θa))=0.对于j≥1, 矛盾.因此L没有大于1的特征值, 于是indexW(A, (θa, 0))=(-1)0=1.

类似可以证明引理4成立.

引理5  假设b>λ1, 则有

(ⅰ)若${\lambda _1}\left( {\frac{{c{k_2}{\theta _b}-ad{k_1}}}{{d{k_1} + d{k_1}{k_2}{\theta _b}}}} \right) < 0$, 则indexW$\left( {A, \left( {0, \frac{{{k_2}}}{d}{\theta _b}} \right)} \right) = 0$;

(ⅱ)若${\lambda _1}\left( {\frac{{c{k_2}{\theta _b}-ad{k_1}}}{{d{k_1} + d{k_1}{k_2}{\theta _b}}}} \right) > 0$, 则indexW$\left( {A, \left( {0, \frac{{{k_2}}}{d}{\theta _b}} \right)} \right) = 1$.

引理6  indexW(A, D′)=1.

证明  ∀t∈[0, 1], 定义

$ {A_t}\left( {U,V} \right) = {\left( { - \Delta + P} \right)^{ - 1}}\left( {\begin{array}{*{20}{c}} {tF\left( {u,v} \right) + PU}\\ {tG\left( {u,v} \right) + PV} \end{array}} \right), $

那么At(U, V):[0, 1]×DW是正的紧算子, 且A=A1.显然在∂DA没有不动点.故indexW(A, D′)有意义.对任意的t, At的不动点是下述方程的解:

$ \left\{ \begin{array}{l} \Delta U = tu\left( {a - u - \frac{{cv}}{{{k_1} + u}}} \right),\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ - \Delta V = tv\left( {b - \frac{{dv}}{{{k_2} + u}}} \right),\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ U = V = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }\mathit{.} \end{array} \right. $ (10)

由定理1知, ∀t∈[0, 1], At的不动点满足uM, vR, 因此At的不动点一定落在D内.由度的同伦不变性知indexW(A, D′)=indexW(A1, D′)=indexW(A0, D′).又因为当t=0时, 方程(10) 仅有平凡解(0, 0), 故indexW(A0, D′)=indexW(A0, (0, 0)).记

$ L = {{A'}_0}\left( {0,0} \right) = {\left( { - \Delta + P} \right)^{ - 1}}\left( {\begin{array}{*{20}{c}} P&0\\ 0&P \end{array}} \right), $

由引理2易知r(L) < 1, 因此I-LW(0, 0)上可逆且LW(0, 0)上不具有α性质.故indexW(A, D′)=1.

定理3  若a>λ1, ${\lambda _1}\left( {-\frac{b}{{1 + \beta {\theta _a}}}} \right) < 0$b>λ1, ${\lambda _1}\left( {\frac{{c{k_2}{\theta _b}-ad{k_1}}}{{d{k_1} + d{k_1}{k_2}{\theta _b}}}} \right) < 0$, 则式(2) 除(0, 0), (θa, 0), $\left( {0, \frac{{{k_2}}}{d}{\theta _b}} \right)$外至少有一个正解.

证明  若式(2) 除了(0, 0), (θa, 0), $\left( {0, \frac{{{k_2}}}{d}{\theta _b}} \right)$外再没有正解.则由引理4, 5, 6和度的可加性知

$1 = {\rm{inde}}{{\rm{x}}_W}\left( {A,D'} \right) = {\rm{inde}}{{\rm{x}}_W}\left( {A,\left( {0,0} \right)} \right) + {\rm{inde}}{{\rm{x}}_W}\left( {A,\left( {0,\frac{{{k_2}}}{d}{\theta _b}} \right)} \right) = 0,$

矛盾.因此, 若a>λ1, ${\lambda _1}\left( {-\frac{b}{{1 + \beta {\theta _a}}}} \right) < 0$b>λ1, λ1$\left( {\frac{{c{k_2}{\theta _b}-ad{k_1}}}{{d{k_1} + d{k_1}{k_2}{\theta _b}}}} \right)$ < 0, 则式(2) 除(0, 0), (θa, 0), $\left( {0, \frac{{{k_2}}}{d}{\theta _b}} \right)$外至少有一个正解.

参考文献
[1] AZIZ-ALAOUI M A, OKIYE M D. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-Type Ⅱ Schemes[J]. Appl Math Lett, 2003, 16(7): 1069-1075 DOI:10.1016/S0893-9659(03)90096-6
[2] 袁海龙, 李艳玲. 一类捕食食饵模型共存解的存在性与稳定性[J]. 陕西师范大学学报(自然科学版), 2014, 42(1): 15-19
YUAN Hailong, LI Yanling. Coexistence of existence and stability of a predator-prey model[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2014, 42(1): 15-19
[3] 孟丹, 李艳玲. 一类具有修正的Leslie型功能反应的捕食-食饵模型[J]. 纺织高校基础科学学报, 2016, 29(1): 11-17
MENG Dan, LI Yanling. A predator-prey model of modified Leslie type functional response[J]. Basic Sciences Journal of Textile Universities, 2016, 29(1): 11-17
[4] 张岳, 李艳玲. 带有交叉扩散项的Holling type Ⅱ捕食-食饵模型的共存[J]. 纺织高校基础科学学报, 2010, 23(4): 439-445
ZHANG Yue, LI Yanling. Coexistnce of predator-prey model wih cross-diffusion and Holling type Ⅱ functional response[J]. Basic Sciences Journal of Textile Universities, 2010, 23(4): 439-445
[5] JIA Yunfeng, WU Jianhua, XU Hongkun. Positive solutions of a Lotka-Volterra competition model with cross-diffusion[J]. Comput Math Appl, 2014, 68(10): 1220-1228 DOI:10.1016/j.camwa.2014.08.016
[6] KUTO K, YAMADA Y. Coexistence problem for a prey-predator model with density-dependent diffusion[J]. Nonlinear Anal, 2009, 71(12): 2223-2232 DOI:10.1016/j.na.2009.05.014
[7] RYU K, AHN I. Coexistence states of a nonlinear Lotka-Volterra type predator-prey model with cross-diffusion[J]. Nonlinear Anal, 2009, 71(12): 1109-1115 DOI:10.1016/j.na.2009.01.097
[8] XU Qian, GUO Yue. The existence and stability of steady states for a prey-predator system with cross diffusion of quasilinear fractional type[J]. Acta Math Appl Sin Engl Ser, 2014, 30(1): 257-270 DOI:10.1007/s10255-014-0281-3
[9] 何堤, 容跃堂, 张晓晶. 一类具有交叉扩散的捕食-食饵模型的分歧[J]. 纺织高校基础科学学报, 2015, 28(4): 425-431
HE Di, RONG Yuetang, ZHANG Xiaojing. Bifurcation for a kind of prey-predator model with cross-diffusion[J]. Basic Sciences Journal of Textile Universities, 2015, 28(4): 425-431
[10] RYU K, AHN I. Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics[J]. J Math Anal Appl, 2003, 283(1): 46-65 DOI:10.1016/S0022-247X(03)00162-8
[11] KUTO K, YAMADA Y. Multiple coexistence states for a prey-predator system with cross-diffusion[J]. J Differential Equations, 2004, 197(2): 315-348 DOI:10.1016/j.jde.2003.08.003
[12] LOU Yuan, NI Weiming. Diffusion vs cross-diffusion:An elliptic approach[J]. J Differential Equations, 1999, 154(1): 157-190 DOI:10.1006/jdeq.1998.3559
[13] NAKASHIMA K, YAMADA Y. Positive steady states for prey-predator models with cross-diffusion[J]. Adv Differential Equations, 1996, 1(6): 1099-1122
[14] CHEN Xinfu, QI Yuanwei, WANG Mingxin. A strongly coupled predator-prey system with non-monotonic functional response[J]. Nonlinear Anal, 2007, 67(6): 1966-1979 DOI:10.1016/j.na.2006.08.022
[15] WANG Mingxin, WANG Xubo. Existence, uniqueness and stability of positive steady states to a prey-predator diffusion system[J]. Sci China Ser A, 2009, 52(5): 1031-1041 DOI:10.1007/s11425-008-0162-4
[16] WANG Lingshu, XU Rui, GUANG Huifeng. A stage-structured predator-prey system with impulsive effect and Holling type-Ⅱ functional response[J]. Journal of Mathematical Research, 2011, 31(1): 147-156
[17] 叶其孝, 李正元, 王明新, 等. 反应扩散方程引论[M]. 北京: 科学出版社, 1990: 40-56.
YE Qixiao, LI Zhengyuan, WANG Mingxin, et al. Introduction to reaction-diffusion equations[M]. Beijing: Science Press, 1990: 40-56.
[18] KO W, RYU K. Coexistence states of a predator-prey system with non-monotonic functional response[J]. Nonlinear Analysis.Real World Applications, 2007, 8(3): 769-786 DOI:10.1016/j.nonrwa.2006.03.003
西安工程大学、中国纺织服装教育学会主办
0

文章信息

张丽霞, 李艳玲.
ZHANG Lixia, LI Yanling.
一类具有交叉扩散的捕食-食饵模型的正解
Positive solutions of a predator-prey model with cross-diffusion
纺织高校基础科学学报, 2017, 30(1): 35-41
Basic Sciences Journal of Textile Universities, 2017, 30(1): 35-41.

文章历史

收稿日期: 2016-09-20

相关文章

工作空间