Vilenkin群上信号的分解与重构
师东利, 李万社, 聂伟平     
陕西师范大学 数学与信息科学学院, 陕西 西安 710119
摘要:探讨将Vilenkin群上的小波理论运用到实际信号分析的算法,根据实际需要重新定义Vilenkin群的二元运算,引入经典的尺度函数和小波函数,在此基础上建立相应的多分辨分析,分析了定义在它上面的信号,运用多分辨分析的特性得到信号分解和重构的算法。进一步给出了康托尔二元群上信号分解和重构的具体算法,得到了Vilenkin群上信号的分解定理和重构定理。
关键词Vilenkin群     小波函数     多分辨分析     分解和重构    
The decomposition and reconstruction of signals on Vilenkin groups
SHI Dongli, LI Wanshe, NIE Weiping     
College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, China
Abstract: Aim to study the algorithm which apply the wavelet theory to the actual signal analysis. According to the actual needs, the dyadic operation on Vilenkin groups is redefined. Then by leading the scaling function and wavelet functions into the Vilenkin groups, the multiresolution analysis is built up. In the followings, the algorithm of decomposition and reconstruction for signals are put foward through analogy and analysis. What's more, the algorithm for signals on the Cantor group is demonstratively given. And the decomposition theorem and reconstruction theorem of the signal on the Vilenkin group are obtained.
Key words: Vilenkin groups     wavelet functions     multiresolution analysis     decomposition and reconstruction    
0 引言

小波变换具有“数学显微镜”之称, 当利用小波实施时频分析时, 由于同时具有时间和频率的局部特性以及多分辨分析的特性, 使得对离散数据的处理变得相对容易, 起初人们只是研究定义在实数或复数上的小波分析.近几年来, 人们开始热衷于研究局部紧的零维交换群上的小波理论. P-adic Vilenkin群就是一类局部紧的零维交换群, 当p=2时, 即为康托尔二元群.1996年, 文献[1]首次介绍了康托尔群上多分辨分析的概念并提出了构造正交小波基的方法.之后, 文献[2-3]深入研究了康托尔群上的小波理论的创建和小波框架的构造.文献[4-14]主要研究了康托尔群的推广Vilenkin群, 详细介绍了Vilenkin群上的尺度函数、小波函数、小波框架以及多分辨分析理论, 但是都没有具体地研究Vilenkin群上信号的分解与重构算法.在文献[15-17]中, 李万社等人探讨了双向小波的快速分解和重构算法以及a尺度正交双向小波的Mallat算法.文章在此基础上主要是对Vilenkin群上的信号进行了分析, 选取一种比较常见的尺度函数以及相对应的小波函数, 建立相应的多分辨分析, 对Vilenkin群上的信号创建一种分解和重构的算法, 使人们能够通过观察、研究信号的局部信息, 更加明晰地分析、理解和处理信号.相关理论性内容参见文献[18].

1 Vilenkin群

每一个正实数都可以表示成一个p进制的数(最常见的就是二进制数和十进制数), 即∀xR, 都有x=$\sum\limits_{i \in {\rm{Z}}} {{x_i}{p^{-i-1}}} $, xi∈0, 1, …, p-1, 简记为x=(xi)i∈Z.用Gp来表示由x=0或者对于x存在一个N(x), 使得∀i < N(x), xi=0且xN(x)=1所构成的集合, 定义其上的二元运算为⊖:

$ x \ominus y: = {\left( {\left| {{x_i} - {y_i}} \right|} \right)_{i \in {\bf{Z}}}},\forall x,y \in {G_p}. $

该二元运算满足:

(1) 结合律:x(yz)=(xy)z, ∀x, y, zGp;

(2) 存在幺元素0∈Gp, x⊖0=0⊖x=x, ∀xGp;

(3) 对于每一个xGp, 都存在逆元素x-1Gp, 使得x-1x=xx-1=0.

Gp是一个群, 称之为Vilenkin群, 并且对∀x, yGp, 满足xy=yx, 因此Vilenkin群也是Abel群.定义Gp上的映射‖x‖:=p-N(x), xGp, 并规定当x=0时, ‖x‖=0.令d(x, y)=‖xy‖, ∀x, yGp, 由于d满足:

(1) d(x, y)≥0, 且d(x, y)=0的充要条件是x=y;

(2) d(x, y)=d(y, x), ∀x, yGp;

(3) d(x, y)≤d(x, z)+d(z, y), 对任意z都成立.

d可以表示xy之间的距离, (Gp, d)为一度量空间.进一步, 由于d(x, y)≤max{d(x, z), d(y, z)}, (Gp, d)可被称为超度量空间.以x为中心的圆邻域可以表示成其中元素与x之间的距离, 即

$ {I_n}\left( x \right) = \left\{ {y \in {G_p}\left| {d\left( {x,y} \right) < {p^{ - n}}} \right.} \right\}. $

n=0时, In(x)简记为I(x); 当x=0时, In(0) 简记为In.综上, I0(0) 简记为I.定义集合EGp上的特征函数为IE, 即

$ I\left( x \right) = \left\{ \begin{array}{l} 1,x \in E,\\ 0,x \in {G_p}\backslash E. \end{array} \right. $

正如前文所述, 可以定义Gp上的映射λ:Gp→[0, ∞), 即

$ \lambda \left( x \right) = \sum\limits_{i \in {\bf{Z}}} {{x_i}{p^{ - 1}},\forall x \in {G_p}} . $

该映射为一一映射.事实上, 若存在$\lambda \left( {{x^1}} \right) = \sum\limits_{i = J_0^1}^{{J^1}} {x_i^1{p^{-i}}} $, $\lambda \left( {{x^2}} \right) = \sum\limits_{i = J_0^2}^{{J^2}} {x_i^2{p^{-i}}} $, 且λ(x1)=λ(x2), 由于xi∈{0, 1, …, p-1}, (p-1)(1+p+p2)+…+pj-1=pj-1 < pj, 故J1=J2, J01=J02, xi1=xi2, iZ.因此x1=x2.定义Gp上的扩张函数A:GpGp, 即(Ax)i=xi+1, ∀xGp, 其逆运算为(A-1x)i=xi-1, 并且当n>0时${A^n} = \underbrace {A \circ A \circ \cdots \circ {A_n}}_n$; 当n < 0时${A^n} = \underbrace {{A^{-1}} \circ {A^{-1}} \circ \cdots \circ {A^{-1}}}_{ - n}$; 当n=0时A0为恒等映射A0x=x.

因为Gp为局部紧群, 其上的Haar测度[2]具有正则性和平移不变性.规定∫GpIIdμ(x)=1, 那么就可以和实数一样定义Vilenkin群上的l次方可积的函数空间Ll(Gp).

2 多分辨分析

令尺度函数φ=II, 该函数具有两个重要的性质:(1) 由函数φ平移得到的函数系{φ0, k:=φ(xλ-1(k))}是彼此正交的; (2) 其满足双尺度方程

$ \varphi = \sum\limits_{i = 0}^{p - 1} {{\varphi _{1,i}}} . $ (1)

其中φj, k=p2/jφ(Ajxλ-1(k)), jZ, kN.可以证明当j固定时, φj, k是彼此正交的, 且∀jZ, kN, ∫Gpφj, kdμ(x)=1.设函数空间Vn由{pn/2φ(Anx), pn/2φ(Anxλ-1(1)), …}组成, 则容易得到以下结论:

(1) 对于函数f(x)∈L2(Gp), 当且仅当f(A-n)∈V0时, f(x)∈Vn;

(2) 对于函数f(x)∈L2(Gp), 当且仅当f(An)∈Vn时, f(x)∈V0;

(3) 函数系{φn, k}构成Vn的一组标准正交基.

同时, 空间序列Vn具有递增性质

$ \cdots \subset {V_{ - 2}} \subset {V_{ - 1}} \subset {V_0} \subset {V_1} \subset {V_2} \subset \cdots $

和逼近性质

$ \bigcap\limits_{n \in {\bf{Z}}} {{V_n} = 0} ,\bigcap\limits_{n \in {\bf{Z}}} {{V_n} = {L_2}\left( {{G_p}} \right)} . $

令小波空间Wn=Vn+1-Vn, 则由空间序列Vn的性质可知, L2(Gp)可被分解成小波空间序列Wn的直和, 即

$ {L_2}\left( {{G_p}} \right) = \mathop \oplus \limits_{n \in {\bf{Z}}} {W_n}. $

由参考文献[5]可知, 相应的小波函数为

$ {\psi ^l} = \sum\limits_{\alpha = 0}^{p - 1} {\exp \left( {2l\alpha {\rm{\pi i/}}p} \right){\varphi _{1,\alpha }}} ,l = 1,2, \cdots ,p - 1, $ (2)

并且$\psi _{j, k}^{\left( l \right)} = {p^{-j/2}}\sum\limits_{s = 0}^{p-1} {\exp \left( {2\pi {\rm{i}}vs/p} \right){\varphi _{j + 1, pk + s}}} $构成L2(Gp)的一组标准正交基.因此, ∀fL2(Gp), f可以被唯一地表示成

$ f\overset{{{L}_{2}}\left( {{G}_{p}} \right)}{\mathop{\doteq }}\,\sum\limits_{l=1}^{p=1}{\sum\limits_{j\in \mathbf{Z},k\in \mathbf{N}}{{{a}_{j,k}}\psi _{j,k}^{\left( l \right)}}}. $

能量有限空间L2(Gp)还可分解为如下直和

$ {L_2}\left( {{G_p}} \right) = {V_0} \oplus {W_0}, \oplus {W_1} \oplus {W_2} \oplus \cdots $

因此, ∀fL2(Gp), f还可以被唯一地表示成

$ f \mathop = \limits^{{L_2}} \sum\limits_{k \in {\bf{N}}} {{a_k}{\varphi _{0,k}}} + \sum\limits_{l = 1}^{p = 1} {\sum\limits_{j,k \in {\bf{N}}} {{a_{j,k}}\psi _{j,k}^{\left( l \right)}} } . $ (3)

下面将介绍如何将Vilenkin群上的信号分解成上述形式.

3 信号的分解与重构

基于多分辨分析理论, 对于任意的fL2(Gp), 都存在一个fnVn, 使得∀ε>0, |f-fn| < ε.因此, 对f进行分解相当于把Vn中的函数fn先分解到Vn-1Wn-1中, 然后对Vn-1进行逐级分解.设

$ {f_n}\left( x \right) = \sum\limits_{k \in {\bf{N}}} {{a_{n,k}}\varphi \left( {{A^n}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right)} , $

其分解的实质就是将表达式中的φn, kφn-1, kψn-1, kl(l=1, 2, …, p-1) 来表示, 再将φn-1, k进行类似分解.那么首先需要得到φn, kφn-1, kψn-1, kl之间的关系.

根据双尺度方程(1) 和小波函数(2) 可以得到

$ \left( {\begin{array}{*{20}{c}} 1&1&1& \cdots &1\\ 1&{\exp \left( {2{\rm{ \mathsf{ π} i/}}p} \right)}&{\exp \left( {4{\rm{ \mathsf{ π} i/}}p} \right)}& \cdots &{\exp \left( {2\left( {p - 1} \right){\rm{ \mathsf{ π} i/}}p} \right)}\\ 1&{\exp \left( {4{\rm{ \mathsf{ π} i/}}p} \right)}&{\exp \left( {8{\rm{ \mathsf{ π} i/}}p} \right)}& \cdots &{\exp \left( {4\left( {p - 1} \right){\rm{ \mathsf{ π} i/}}p} \right)}\\ 1&{\exp \left( {6{\rm{ \mathsf{ π} i/}}p} \right)}&{\exp \left( {12{\rm{ \mathsf{ π} i/}}p} \right)}& \cdots &{\exp \left( {6\left( {p - 1} \right){\rm{ \mathsf{ π} i/}}p} \right)}\\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1&{\exp \left( {2\left( {p - 1} \right){\rm{ \mathsf{ π} i/}}p} \right)}&{\exp \left( {4\left( {p - 1} \right){\rm{ \mathsf{ π} i/}}p} \right)}& \cdots &{\exp \left( {2{{\left( {p - 1} \right)}^2}{\rm{ \mathsf{ π} i/}}p} \right)} \end{array}} \right). $
$ \left( {\begin{array}{*{20}{c}} {\varphi \left( {Ax} \right)}\\ {\varphi \left( {Ax \ominus {\lambda ^{ - 1}}\left( 1 \right)} \right)}\\ {\varphi \left( {Ax \ominus {\lambda ^{ - 1}}\left( 2 \right)} \right)}\\ {\varphi \left( {Ax \ominus {\lambda ^{ - 1}}\left( 3 \right)} \right)}\\ \vdots \\ {\varphi \left( {Ax \ominus {\lambda ^{ - 1}}\left( {p - 1} \right)} \right)} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {\varphi \left( x \right)}\\ {{\psi ^1}\left( x \right)}\\ {{\psi ^2}\left( x \right)}\\ {{\psi ^3}\left( x \right)}\\ \vdots \\ {{\psi ^{p - 1}}\left( x \right)} \end{array}} \right), $

解得

$ \left( {\begin{array}{*{20}{c}} {\varphi \left( {Ax} \right)}\\ {\varphi \left( {Ax \ominus {\lambda ^{ - 1}}\left( 1 \right)} \right)}\\ {\varphi \left( {Ax \ominus {\lambda ^{ - 1}}\left( 2 \right)} \right)}\\ {\varphi \left( {Ax \ominus {\lambda ^{ - 1}}\left( 3 \right)} \right)}\\ \vdots \\ {\varphi \left( {Ax \ominus {\lambda ^{ - 1}}\left( {p - 1} \right)} \right)} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {\frac{1}{p}}&{\frac{1}{p}}&{\frac{1}{p}}& \cdots \\ {\frac{1}{p}}&{\frac{{\exp \left( { - 2{\rm{ \mathsf{ π} i/}}p} \right)}}{p}}&{\frac{{\exp \left( { - 4{\rm{ \mathsf{ π} i/}}p} \right)}}{p}}& \cdots \\ {\frac{1}{p}}&{\frac{{\exp \left( { - 4{\rm{ \mathsf{ π} i/}}p} \right)}}{p}}&{\frac{{\exp \left( { - 8{\rm{ \mathsf{ π} i/}}p} \right)}}{p}}& \cdots \\ {\frac{1}{p}}&{\frac{{\exp \left( { - 6{\rm{ \mathsf{ π} i/}}p} \right)}}{p}}&{\frac{{\exp \left( { - 12{\rm{ \mathsf{ π} i/}}p} \right)}}{p}}& \cdots \\ \vdots & \vdots & \vdots & \vdots \\ {\frac{1}{p}}&{\frac{{\exp \left( { - 2\left( {p - 1} \right){\rm{ \mathsf{ π} i/}}p} \right)}}{p}}&{\frac{{\exp \left( { - 4\left( {p - 1} \right){\rm{ \mathsf{ π} i/}}p} \right)}}{p}}& \cdots \end{array}} \right)\left( {\begin{array}{*{20}{c}} {\varphi \left( x \right)}\\ {{\psi ^1}\left( x \right)}\\ {{\psi ^2}\left( x \right)}\\ {{\psi ^3}\left( x \right)}\\ \vdots \\ {{\psi ^{p - 1}}\left( x \right)} \end{array}} \right). $

进而可以得到

$ \left\{ \begin{array}{l} \varphi \left( {{A^n}x} \right) = \frac{1}{p}\varphi \left( {{A^{n - 1}}x} \right) + \frac{1}{p}{\psi ^1}\left( {{A^{n - 1}}x} \right) + \frac{1}{p}{\psi ^2}\left( {{A^{n - 1}}x} \right) + \cdots + \frac{1}{p}{\psi ^{p - 1}}\left( {{A^{n - 1}}x} \right),\\ \varphi \left( {{A^n}x \ominus {\lambda ^{ - 1}}\left( 1 \right)} \right) = \frac{1}{p}\varphi \left( {{A^{n - 1}}x} \right) + \frac{{\exp \left( { - 2{\rm{ \mathsf{ π} i/}}p} \right)}}{p}{\psi ^1}\left( {{A^{n - 1}}x} \right) + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{\exp \left( { - 4{\rm{ \mathsf{ π} i/}}p} \right)}}{p}{\psi ^2}\left( {{A^{n - 1}}x} \right) + \cdots + \frac{{\exp \left( { - 2\left( {p - 1} \right){\rm{ \mathsf{ π} i/}}p} \right)}}{p}{\psi ^{p - 1}}\left( {{A^{n - 1}}x} \right),\\ \varphi \left( {{A^n}x \ominus {\lambda ^{ - 1}}\left( 2 \right)} \right) = \frac{1}{p}\varphi \left( {{A^{n - 1}}x} \right) + \frac{{\exp \left( { - 4{\rm{ \mathsf{ π} i/}}p} \right)}}{p}{\psi ^1}\left( {{A^{n - 1}}x} \right) + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{\exp \left( { - 8{\rm{ \mathsf{ π} i/}}p} \right)}}{p}{\psi ^2}\left( {{A^{n - 1}}x} \right) + \cdots + \frac{{\exp \left( { - 4\left( {p - 1} \right){\rm{ \mathsf{ π} i/}}p} \right)}}{p}{\psi ^2}\left( {{A^{n - 1}}x} \right),\\ \varphi \left( {{A^n}x \ominus {\lambda ^{ - 1}}\left( 3 \right)} \right) = \frac{1}{p}\varphi \left( {{A^{n - 1}}x} \right) + \frac{{\exp \left( { - 6{\rm{ \mathsf{ π} i/}}p} \right)}}{p}{\psi ^1}\left( {{A^{n - 1}}x} \right) + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{\exp \left( { - 12{\rm{ \mathsf{ π} i/}}p} \right)}}{p}{\psi ^2}\left( {{A^{n - 1}}x} \right) + \cdots + \frac{{\exp \left( { - 6\left( {p - 1} \right){\rm{ \mathsf{ π} i/}}p} \right)}}{p}{\psi ^{p - 1}}\left( {{A^{n - 1}}x} \right),\\ \vdots \\ \varphi \left( {{A^n}x \ominus {\lambda ^{ - 1}}\left( {p - 1} \right)} \right) = \frac{1}{p}\varphi \left( {{A^{n - 1}}x} \right) + \frac{{\exp \left( { - 2\left( {p - 1} \right){\rm{ \mathsf{ π} i/}}p} \right)}}{p}{\psi ^1}\left( {{A^{n - 1}}x} \right) + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{\exp \left( { - 4\left( {p - 1} \right){\rm{ \mathsf{ π} i/}}p} \right)}}{p}{\psi ^2}\left( {{A^{n - 1}}x} \right) + \cdots + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{\exp \left( { - 2{{\left( {p - 1} \right)}^2}{\rm{ \mathsf{ π} i/}}p} \right)}}{p}{\psi ^{p - 1}}\left( {{A^{n - 1}}x} \right). \end{array} \right. $ (4)

接着将信号fn按照其下标k进行如下分离:

$ \begin{array}{l} {f_n}\left( x \right) = \sum\limits_{k \in {\bf{N}}} {{a_{n,k}}\varphi \left( {{A^n}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right)} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{k \in {\bf{N}}} {{a_{n,pk}}\varphi \left( {{A^n}x \ominus {\lambda ^{ - 1}}\left( {pk} \right)} \right)} + \sum\limits_{k \in {\bf{N}}} {{a_{n,pk + 1}}\varphi \left( {{A^n}x \ominus {\lambda ^{ - 1}}\left( {pk + 1} \right)} \right)} + \cdots + \\ \;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{k \in {\bf{N}}} {{a_{n,pk}}\varphi \left( {{A^n}x \ominus {\lambda ^{ - 1}}\left( {pk + p - 1} \right)} \right)} . \end{array} $ (5)

将式(4) 中的xxλ-1(p1-nk)替换并代入式(5) 得

$ \begin{array}{l} {f_n}\left( x \right) = \sum\limits_{k \in {\bf{N}}} {{a_{n,pk}}\left[ {\frac{1}{p}\varphi \left( {{A^{n - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right) + \frac{1}{p}{\psi ^1}\left( {{A^{n - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right) + } \right.} \\ \left. {\;\;\;\;\;\;\;\;\;\;\;\;\frac{1}{p}{\psi ^2}\left( {{A^{n - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right) + \cdots + \frac{1}{p}{\psi ^p} - 1\left( {{A^{n - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right)} \right] + \\ \;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{k \in {\bf{N}}} {{a_{n,pk + 1}}\left[ {\frac{1}{p}\varphi \left( {{A^{n - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right) + \frac{{\exp \left( { - 2{\rm{ \mathsf{ π} i}}/p} \right)}}{p}{\psi ^1}\left( {{A^{n - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right) + } \right.} \\ \;\;\;\;\;\;\;\;\;\;\;\;\left. {\frac{{\exp \left( { - 4{\rm{ \mathsf{ π} i}}/p} \right)}}{p}{\psi ^2}\left( {{A^{n - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right) + \cdots + \frac{{\exp \left( { - 2\left( {p - 1} \right){\rm{ \mathsf{ π} i}}/p} \right)}}{p}{\psi ^p} - 1\left( {{A^{n - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right)} \right] + \\ \;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{k \in {\bf{N}}} {{a_{n,pk + 2}}\left[ {\frac{1}{p}\varphi \left( {{A^{n - 1}}x{\lambda ^{ - 1}}\left( k \right)} \right) + \frac{{\exp \left( { - 4{\rm{ \mathsf{ π} i}}/p} \right)}}{p}{\psi ^1}\left( {{A^{n - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right) + } \right.} \\ \;\;\;\;\;\;\;\;\;\;\;\;\left. {\frac{{\exp \left( { - 8{\rm{ \mathsf{ π} i}}/p} \right)}}{p}{\psi ^2}\left( {{A^{n - 1}}x{\lambda ^{ - 1}}\left( k \right)} \right) + \cdots + \frac{{\exp \left( { - 4\left( {p - 1} \right){\rm{ \mathsf{ π} i}}/p} \right)}}{p}{\psi ^2}\left( {{A^{n - 1}}x{\lambda ^{ - 1}}\left( k \right)} \right)} \right] + \cdots + \\ \;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{k \in {\bf{N}}} {{a_{n,pk + p - 1}}\left[ {\frac{1}{p}\varphi \left( {{A^{n - 1}}x{\lambda ^{ - 1}}\left( k \right)} \right) + \frac{{\exp \left( { - 2\left( {p - 1} \right){\rm{ \mathsf{ π} i}}/p} \right)}}{p}{\psi ^1}\left( {{A^{n - 1}}x{\lambda ^{ - 1}}\left( k \right)} \right) + } \right.} \\ \;\;\;\;\;\;\;\;\;\;\;\;\left. {\frac{{\exp \left( { - 4\left( {p - 1} \right){\rm{ \mathsf{ π} i}}/p} \right)}}{p}{\psi ^2}\left( {{A^{n - 1}}x{\lambda ^{ - 1}}\left( k \right)} \right) + \cdots + \frac{{\exp \left( { - 2{{\left( {p - 1} \right)}^2}{\rm{ \mathsf{ π} i}}/p} \right)}}{p}{\psi ^{p - 1}}\left( {{A^{n - 1}}x{\lambda ^{ - 1}}\left( k \right)} \right)} \right] = \\ \;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{k \in {\bf{N}}} {\left[ {\left( {{a_{n,pk}} + {a_{n,pk + 1}}\exp \left( { - 2{\rm{ \mathsf{ π} i}}/p} \right) + {a_{n,pk + 2}}\exp \left( { - 4{\rm{ \mathsf{ π} i}}/p} \right) + \cdots + } \right.} \right.} \\ \;\;\;\;\;\;\;\;\;\;\;\;\left. {\left. {{a_{n,pk + p - 1}}\exp \left( { - 2\left( {p - 1} \right){\rm{ \mathsf{ π} i}}/p} \right)} \right)/p} \right]{\psi ^1}\left( {{A^{n - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right) + \\ \;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{k \in {\bf{N}}} {\left[ {\left( {{a_{n,pk}} + {a_{n,pk + 1}}\exp \left( { - 4{\rm{ \mathsf{ π} i}}/p} \right) + {a_{n,pk + 2}}\exp \left( { - 8{\rm{ \mathsf{ π} i}}/p} \right) + \cdots + } \right.} \right.} \\ \;\;\;\;\;\;\;\;\;\;\;\;\left. {\left. {{a_{n,pk + p - 1}}\exp \left( { - 4\left( {p - 1} \right){\rm{ \mathsf{ π} i}}/p} \right)} \right)/p} \right]{\psi ^2}\left( {{A^{n - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right) + \cdots + \\ \;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{k \in {\bf{N}}} {\left[ {\left( {{a_{n,pk}} + {a_{n,pk + 1}}\exp \left( { - 2\left( {p - 1} \right){\rm{ \mathsf{ π} i}}/p} \right) + {a_{n,pk + 2}}\exp \left( { - 4\left( {p - 1} \right){\rm{ \mathsf{ π} i}}/p} \right) + \cdots + } \right.} \right.} \\ \;\;\;\;\;\;\;\;\;\;\;\;\left. {\left. {{a_{n,pk + p - 1}}\exp \left( { - 2{{\left( {p - 1} \right)}^2}{\rm{ \mathsf{ π} i}}/p} \right)} \right)/p} \right]{\psi ^2}\left( {{A^{n - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;{f_{n - 1}} + g_{n - 1}^1 + g_{n - 1}^2 + \cdots + g_{n - 1}^{p - 1}. \end{array} $ (6)

上式中第一项是fnVn-1中的分量, 后p-1项是在Wn-1中的分量.由此可以得到下面的分解定理.

定理1  (分解定理)假设flVl, 并且fl可以表示为

$ {f_l}\left( x \right) = \sum\limits_{k \in {\bf{N}}} {{a_{l,k}}\varphi \left( {{A^n}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right)} , $

fl(x)可以分解为

$ {f_l}\left( x \right) = {f_{l - 1}}\left( x \right) + g_{n - 1}^1 + g_{n - 1}^2 + \cdots + g_{n - 1}^{p - 1}. $

其中

$ \begin{array}{*{20}{c}} {{f_{l - 1}}\left( x \right) = \sum\limits_{k \in {\bf{N}}} {{a_{n - 1,k}}\varphi \left( {{A^{l - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right)} \in {V_{l - 1}},}\\ {g_{l - 1}^v = \sum\limits_{k \in {\bf{N}}} {a_{l - 1,k}^v\psi \left( {{A^{l - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right)} \in {W_{l - 1}},v = 1,2, \cdots ,p - 1,} \end{array} $

满足

$ \begin{array}{l} {a_{n - 1,k}} = \frac{{{a_{n,pk}} + {a_{n,pk + 1}}\exp \left( { - 2{\rm{\pi i}}/p} \right) + {a_{n,pk + 2}}\exp \left( { - 4{\rm{\pi i}}/p} \right) + \cdots + {a_{n,pk + 2 - 1}}\exp \left( { - 2\left( {p - 1} \right){\rm{\pi i}}/p} \right)}}{p},\\ a_{l - 1,k}^v = \frac{{{a_{n,pk}} + {a_{n,pk + 1}}\exp \left( { - 2v{\rm{\pi i}}/p} \right) + {a_{n,pk + 2}}\exp \left( { - 4v{\rm{\pi i}}/p} \right) + \cdots + {a_{n,pk + p - 1}}\exp \left( { - 2v\left( {p - 1} \right){\rm{\pi i}}/p} \right)}}{p}. \end{array} $

按照上面的分解算法, 一直分解下去就可以得到如同式(3) 的表达形式.

特别地, 当p=2时, G2为康托尔二元群, 与尺度函数相对应的小波函数只有ψ1.若flVl, 并且

$ {f_l} = \sum\limits_{k \in {\bf{N}}} {{a_{l,k}}\varphi \left( {{A^l}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right)} , $

fl可以分解为fl=fl-1+gl-1.其中

$ \begin{array}{l} {f_{l - 1}} = \sum\limits_{k \in {\bf{Z}}} {{a_{l - 1,k}}\varphi \left( {{A^{l - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right.} \in {V_{l - 1}},\\ {g_{l - 1}} = \sum\limits_{k \in {\bf{Z}}} {a_{l - 1,k}^1{\psi ^1}\left( {{A^{l - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right.} \in {W_{l - 1}}, \end{array} $

表达式中的系数分别为

$ {a_{l - 1,k}} = \frac{{{a_{l,2k}} + {a_{l,2k + 1}}}}{2},a_{l - 1,k}^1 = \frac{{{a_{l,2k}} - {a_{l,2k + 1}}}}{2}. $

在根据需要对信号进行分解、处理后, 需要对信号进行重新恢复, 也就是所谓的信号的重构.下面讨论信号的重构问题.

定理2  (重构定理)假设

$ \begin{array}{*{20}{c}} {{f_l}\left( x \right) = {f_0}\left( x \right) + g_0^1\left( x \right) + g_0^2\left( x \right) + \cdots + g_0^{p - 1}\left( x \right) + g_1^1\left( x \right) + \cdots + }\\ {g_1^{p - 1}\left( x \right) + \cdots + g_{l - 1}^1\left( x \right) + \cdots + g_{l - 1}^{p - 1}\left( x \right),} \end{array} $

其中

$ \begin{array}{*{20}{c}} {{f_0}\left( x \right) = \sum\limits_{k \in {\bf{Z}}} {{a_{0,k}}\varphi \left( {x \ominus {\lambda ^{ - 1}}\left( k \right)} \right)} \in {V_0},}\\ {g_j^v\left( x \right) = \sum\limits_{k \in {\bf{Z}}} {a_{j,k}^v\varphi \left( {x \ominus {\lambda ^{ - 1}}\left( k \right)} \right)\left( {v = 1,2, \cdots ,p - 1} \right)} \in {W_j}.} \end{array} $

fl(x)可以表示成

$ {f_l}\left( x \right) = \sum\limits_{k \in {\bf{Z}}} {{a_{l,k}}\varphi \left( {x \ominus {\lambda ^{ - 1}}\left( k \right)} \right)} \in {V_l}. $

其中系数al, k可以由下面的公式递推得到:

$ {a_{s,n}} = \left\{ \begin{array}{l} {a_{s - 1,k}} + \sum\limits_{v = 1}^{p - 1} {a_{s - 1,k}^v} ,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;n = pk,\\ {a_{s - 1,k}} + \sum\limits_{v = 1}^{p - 1} {a_{s - 1,k}^v\exp \left( {2v{\rm{\pi i}}/p} \right)} ,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;n = pk + 1,\\ {a_{s - 1,k}} + \sum\limits_{v = 1}^{p - 1} {a_{s - 1,k}^v\exp \left( {4v{\rm{\pi i}}/p} \right)} ,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;n = pk + 2,\\ \vdots \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \vdots \\ {a_{s - 1,k}} + \sum\limits_{v = 1}^{p - 1} {a_{s - 1,k}^v\exp \left( {2\left( {p - 1} \right)v{\rm{\pi i}}/p} \right)} ,\;\;\;\;\;n = pk + p - 1. \end{array} \right. $

证明  只需要证明由fl-1Vl-1gl-1vWl-1可以得到flVl的表达式即可.设fl=fl-1(x)+gl-11(x)+gl-12(x)+…+gl-1p-1(x), 其中

$ \begin{array}{*{20}{c}} {{f_{l - 1}}\left( x \right) = \sum\limits_{k \in {\bf{Z}}} {{a_{l - 1,k}}\varphi \left( {{A^{l - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right)} \in {V_{l - 1}},}\\ {g_{l - 1}^v = \sum\limits_{k \in {\bf{Z}}} {a_{l - 1,k}^v{\psi ^v}\left( {{A^{l - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right) \in {W_{l - 1}},v = 1,2, \cdots ,p - 1.} } \end{array} $

由式(1)~(2) 可得

$ \left( {\begin{array}{*{20}{c}} {\varphi \left( {{A^{n - 1}}x} \right)}\\ {{\psi ^1}\left( {{A^{n - 1}}x} \right)}\\ {{\psi ^2}\left( {{A^{n - 1}}x} \right)}\\ {{\psi ^3}\left( {{A^{n - 1}}x} \right)}\\ \vdots \\ {{\psi ^p} - 1\left( {{A^{n - 1}}x} \right)} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} 1&1&1& \cdots &1\\ 1&{\exp \left( {2{\rm{ \mathsf{ π} i/}}p} \right)}&{\exp \left( {4{\rm{ \mathsf{ π} i/}}p} \right)}& \cdots &{\exp \left( {2\left( {p - 1} \right){\rm{ \mathsf{ π} i/}}p} \right)}\\ 1&{\exp \left( {4{\rm{ \mathsf{ π} i/}}p} \right)}&{\exp \left( {8{\rm{ \mathsf{ π} i/}}p} \right)}& \cdots &{\exp \left( {4\left( {p - 1} \right){\rm{ \mathsf{ π} i/}}p} \right)}\\ 1&{\exp \left( {6{\rm{ \mathsf{ π} i/}}p} \right)}&{\exp \left( {12{\rm{ \mathsf{ π} i/}}p} \right)}& \cdots &{\exp \left( {6\left( {p - 1} \right){\rm{ \mathsf{ π} i/}}p} \right)}\\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1&{\exp \left( {2\left( {p - 1} \right){\rm{ \mathsf{ π} i/}}p} \right)}&{\exp \left( {4\left( {p - 1} \right){\rm{ \mathsf{ π} i/}}p} \right)}& \cdots &{\exp \left( {2{{\left( {p - 1} \right)}^2}{\rm{ \mathsf{ π} i/}}p} \right)} \end{array}} \right) $
$\left( {\begin{array}{*{20}{c}} {\varphi \left( {{A^n}x} \right)}\\ {\varphi \left( {{A^n}x \ominus {\lambda ^{ - 1}}\left( 1 \right)} \right)}\\ {\varphi \left( {{A^n}x \ominus {\lambda ^{ - 1}}\left( 2 \right)} \right)}\\ {\varphi \left( {{A^n}x \ominus {\lambda ^{ - 1}}\left( 3 \right)} \right)}\\ \vdots \\ {\varphi \left( {{A^n}x \ominus {\lambda ^{ - 1}}\left( {p - 1} \right)} \right)} \end{array}} \right)$ (7)

把式(7) 代入fl的表达式中得

$ \begin{array}{l} {f_l}\left( x \right) = \sum\limits_{k \in {\bf{N}}} {{a_{l - 1,k}}\varphi \left( {{A^{l - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right)} + \sum\limits_{v = 1}^{p - 1} {\sum\limits_{k \in {\bf{N}}} {a_{l - 1,k}^v{\psi ^v}\left( {{A^{l - 1}}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right)} } = \\ \;\;\;\;\;\;\;\;\;\;\;\sum\limits_{k \in {\bf{N}}} {{a_{l - 1,k}}\left[ {\varphi \left( {{A^{l - 1}}x \ominus {\lambda ^{ - 1}}\left( {pk} \right)} \right) + \varphi \left( {{A^{l - 1}}x \ominus {\lambda ^{ - 1}}\left( {pk + 1} \right)} \right) + \cdots + } \right.} \\ \;\;\;\;\;\;\;\;\;\;\;\left. {\varphi \left( {{A^{l - 1}}x \ominus {\lambda ^{ - 1}}\left( {pk + p - 1} \right)} \right)} \right] + \sum\limits_{v = 1}^{p - 1} {\sum\limits_{k \in {\bf{N}}} {a_{l - 1,k}^v\left[ {\varphi \left( {{A^l}x \ominus {\lambda ^{ - 1}}\left( {pk} \right)} \right) + } \right.} } \\ \;\;\;\;\;\;\;\;\;\;\;\exp \left( {2v{\rm{\pi i/}}p} \right)\varphi \left( {{A^l}x \ominus {\lambda ^{ - 1}}\left( {pk + 1} \right)} \right) + \cdots + \\ \;\;\;\;\;\;\;\;\;\;\;\exp \left( {2\left( {p - 1} \right)v{\rm{\pi i/}}p} \right)\varphi \left( {{A^l}x \ominus {\lambda ^{ - 1}}\left( {pk + p - 1} \right)} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\sum\limits_{k \in {\bf{N}}} {\left\{ {\left[ {{a_{l - 1}},k + \sum\limits_{v = 1}^{p - 1} {a_{l - 1,k}^v} } \right]\varphi \left( {{A^l}x \ominus {\lambda ^{ - 1}}\left( {pk} \right)} \right) + } \right.} \\ \;\;\;\;\;\;\;\;\;\;\;\left[ {{a_{l - 1,k}} + \sum\limits_{v = 1}^{p - 1} {a_{l - 1,k}^v\exp \left( {2v{\rm{\pi i/}}p} \right)} } \right]\varphi \left( {{A^l}x \ominus {\lambda ^{ - 1}}\left( {pk + 1} \right)} \right) + \cdots + \\ \;\;\;\;\;\;\;\;\;\;\;\left. {\left[ {{a_{l - 1,k}} + \sum\limits_{v = 1}^{p - 1} {a_{l - 1,k}^v\exp \left( {2\left( {p - 1} \right)v{\rm{\pi i/}}p} \right)} } \right]\varphi \left( {{A^l}x \ominus {\lambda ^{ - 1}}\left( {pk + p - 1} \right)} \right)} \right\} = \\ \;\;\;\;\;\;\;\;\;\;\;\sum\limits_{k \in {\bf{N}}} {{a_{l,n}}\varphi \left( {{A^l}x \ominus {\lambda ^{ - 1}}\left( n \right)} \right)} . \end{array} $

其中

$ {a_{l,n}} = \left\{ \begin{array}{l} {a_{l - 1,k}} + \sum\limits_{v = 1}^{p - 1} {a_{l - 1,k}^v} ,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;n = pk\\ {a_{l - 1,k}} + \sum\limits_{v = 1}^{p - 1} {a_{l - 1,k}^v\exp \left( {2v{\rm{\pi i/}}p} \right)} ,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;n = pk + 1,\\ {a_{l - 1,k}} + \sum\limits_{v = 1}^{p - 1} {a_{l - 1,k}^v\exp \left( {4v{\rm{\pi i/}}p} \right)} ,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;n = pk + 2,\\ \vdots \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \vdots \\ {a_{l - 1,k}} + \sum\limits_{v = 1}^{p - 1} {a_{l - 1,k}^v\exp \left( {2\left( {p - 1} \right)v{\rm{\pi i/}}p} \right)} ,\;\;\;\;\;\;n = pk + p - 1. \end{array} \right. $

p=2时, 若已知fl=f0+g01+g11+g21+…+gl-11, 其中

$ \begin{array}{l} {f_0}\left( x \right) = \sum\limits_{k \in {\bf{N}}} {{a_{0,k}}\left( {x \ominus {\lambda ^{ - 1}}\left( k \right)} \right) \in {V_0}} ,\\ g_j^1\left( x \right) = \sum\limits_{k \in {\bf{N}}} {a_{j,k}^1\left( {x \ominus {\lambda ^{ - 1}}\left( k \right)} \right) \in {W_j}} . \end{array} $

则有重构定理可以得到

$ {f_l}\left( x \right) = \sum\limits_{k \in {\bf{N}}} {{a_{l,k}}\left( {{A^l}x \ominus {\lambda ^{ - 1}}\left( k \right)} \right) \in {V_l}} , $

其系数al, k可以由

$ {a_{s,n}}\left\{ \begin{array}{l} {a_{s - 1,k}} + a_{s - 1,k}^1,n = 2k,\\ {a_{s - 1,k}} - a_{s - 1,k}^1,n = 2k + 1. \end{array} \right. $

得到

3 结束语

重新定义了Vilenkin群上的二元运算, 根据经典的尺度函数和小波函数建立了Vilenkin群上的多分辨分析, 并得到了信号的分解和重构定理.使得信号能够通过分解展现出一些局部信息, 帮助人们更好地理解和处理信号, 同时为恢复处理过后的信号提供了精确的算法.文中只采用了一种经典的小波函数, 用以对信号进行分解与重构的算法分析.该理论还可辩证地运用到其他多分辨分析系统中, 以更好地分析和处理信号.

参考文献
[1] LANG W C. Orthogonal wavelets on the Cantor dyadic group[J]. SIAM Journal of Mathematical Analysis, 1996, 27(1): 305-312 DOI:10.1137/S0036141093248049
[2] PROTASOV V Yu, FARKOV Yu A. Dyadic wavelets and refinations on a half-line sbornik[J]. Sbornik Mathematics, 2006, 197(10): 1529-1558 DOI:10.1070/SM2006v197n10ABEH003811
[3] FARKOV Yuri A. Examples of frames on the Cantor dyadic group[J]. Journal of Mathematical Sciences, 2012, 187(1): 22-34 DOI:10.1007/s10958-012-1046-2
[4] LUKOMSKII S F. Step refinable functions and orthogonal MRA on p-adic Vilenkin groups[J]. Journal of Fourier Analysis and Application, 2014, 20(1): 42-65 DOI:10.1007/s00041-013-9301-6
[5] LUUKOMSKII S F. Riesz multiresolution analysis on Vilenkin groups[J]. Doklady Mathematics, 2014, 457(1): 24-27
[6] KHRENNIKOV A Yu, SHELKOVICH V M, SKOPINA M. P-Adic refinable functions and MRA-based wavelets[J]. J Approx Theory, 2009, 161(1): 226-238 DOI:10.1016/j.jat.2008.08.008
[7] LUKOMSKII S F. Multiresolition analysis on zero-dimensional groups and wavelets bases[J]. Math Sbornik, 2010, 201(5): 41-64
[8] LUKOMSKII S F, BERDNIKOV G S, KRUSS Yu S. On the orthogonality of a system of shifts of the scaling function on Vilenkin groups[J]. Matematicheskie Zametki, 2015, 98(2): 310-313 DOI:10.4213/mzm
[9] FARKOVS Yu. Mutiresolution analysis and wavelets on Vilenkin groups[J]. Facta Unversitatis, Ser:Electri Enerd, 2008, 21(3): 309-325 DOI:10.2298/FUEE0803309F
[10] FARKOV Yuri A, RODIONOV Evgeny A. Algorithms for wavelet construction on Vilenkin groups[J]. P-Adic Numbers, Ultrametric Analysis and Applications, 2011, 3(3): 181-195 DOI:10.1134/S2070046611030022
[11] LUKOMSKII S F, BERDNIKOV G S, KRUSS Yu S. On the orthogonality of a system of shifts of the scaling function on vilenkin groups[J]. Mat.Zametki, 2015, 98(2): 310-313 DOI:10.4213/mzm
[12] FARKOV Yuri, LEBEDEVA Elena, SKOPINA Maria. Wavelet frames on Vilenkin groups and their approximation properties[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2015, 13(5): 1550036 DOI:10.1142/S0219691315500368
[13] LUKOMSKII S F. Riesz multiresolution analysis on zero-dimensional groups[J]. Izvestiya:Mathematics, 2015, 79(1): 1 DOI:10.1070/IM2015v079n01ABEH002731
[14] SERGEY F. Step refinable functions and orthogonal MRA on Vilenkin groups[J]. Lukomskii Journal of Fourier Analysis and Applications, 2014, 20(1): 42-65 DOI:10.1007/s00041-013-9301-6
[15] 李万社, 朱岩. 双向小波的快速分解和重构算法[J]. 汕头大学学报(自然科学版), 2008, 23(4): 1-7
LI Wanshe, ZHU Yan. Fast algorithm of two-direction wavelet[J]. Journal of Shantou University(Natural Science Edition), 2008, 23(4): 1-7
[16] 李万社, 郝伟, 蒙少亭. a尺度正交双向小波的Mallat算法[J]. 陕西师范大学学报(自然科学版), 2010, 38(3): 1-5
LI Wanshe, HAO Wei, MENT Shaoting. The Mallat algorithm of orthonormal two-direction wavelets with dilation factor a[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2010, 38(3): 1-5
[17] 延卫军. m尺度双正交双向小波的分解重构算法[J]. 西安文理学院学报(自然科学版), 2015, 18(4): 40-45
YAN Weijun. The decomposition and reconsruction algorithms of biorthogonal two-direction wavelets with dilation facter m[J]. Journal of Xi'an University of Art and Science(Nature Science Edition), 2015, 18(4): 40-45
[18] 成礼智, 王红霞, 罗永. 小波的理论与应用[M]. 北京: 科学出版社, 2004: 64-73.
CHENG Lizhi, WANG Hongxia, LUO Yong. Wavelet theory and its application[M]. Beijing: Science Press, 2004: 64-73.
西安工程大学、中国纺织服装教育学会主办
0

文章信息

师东利, 李万社, 聂伟平.
SHI Dongli, LI Wanshe, NIE Weiping.
Vilenkin群上信号的分解与重构
The decomposition and reconstruction of signals on Vilenkin groups
纺织高校基础科学学报, 2017, 30(1): 10-17
Basic Sciences Journal of Textile Universities, 2017, 30(1): 10-17.

文章历史

收稿日期: 2016-06-02

相关文章

工作空间