对数各向异性Sobolev不等式
冯廷福, 董艳    
西北工业大学 应用数学系, 陕西 西安 710129
摘要: 利用Hölder不等式,分别结合各向异性Sobolev不等式和带权各向异性Sobolev不等式,得到了对数各向异性Sobolev不等式和对数带权各向异性Sobolev不等式,从而将对数Sobolev不等式推广到对数各向异性情形.
关键词: Hölder不等式     对数各向异性Sobolev不等式     对数带权各向异性Sobolev不等式    
Logarithmic anisotropic Sobolev inequalities
FENG Tingfu , DONG Yan     
Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710129, China
Abstract: The logarithmic anisotropic Sobolev inequality is proven by using the Hölder inequality combine with the anisotropic Sobolev inequality. Furthermore, the logarithmic weighted anisotropic Sobolev inequality is obtained by the same way. It generalizes logarithmic Sobolev inequalities to the logarithmic anisotropic case.
Key words: HÖder inequality     logarithmic anisotropic Sobolev inequality     logarithmic weighted anisotropic Sobolev inequality    

1 引言和主要结果

各向异性椭圆方程来自各向异性介质的物理性质研究[1, 2, 3, 4].近年来,已有学者研究了各向异性椭圆方程解的可积性和有界性等,其中各向异性Sobolev不等式起着重要作用[3, 4, 5, 6]. 注意到Merker[7]利用Hölder不等式证明了如下形式的对数各向同性Sobolev不等式

${{\int }_{\Omega }}\frac{{{\left| u \right|}^{p}}}{\parallel u\parallel _{{{L}^{p}}}^{p}}~log\left( \frac{{{\left| u \right|}^{p}}}{\parallel u\parallel _{{{L}^{p}}}^{p}} \right)dx\le \frac{p}{n}log\left( \frac{c\parallel Du{{\parallel }^{p}}_{{{L}^{p}}}}{\parallel u{{\parallel }^{p}}_{{{L}^{p}}}} \right),$ (1)
其中u∈W01,p (Ω),1≤p<+∞,c为正常数.受此启发,本文给出各向异性Sobolev不等式[8, 9, 10, 11, 12, 13, 14]的几个推广.即利用Hölder不等式分别结合各向异性Sobolev不等式和带权各向异性Sobolev不等式[15, 16, 17, 18]建立对数各向异性Sobolev不等式和对数带权各向异性Sobolev不等式,从而将式(1)从各向同性的情形推广到各向异性. 下文出现的c均表示正常数.本文总设ΩRn中的一个有界开集.本文主要结果如下.

定理 1(对数各向异性Sobolev不等式) 设u∈W01,(pi) (Ω),其中1≤pi<+∞(i=1,2,…,n),记$\bar{p}={{\left( \frac{1}{n}\sum\limits_{i=1}^{n}{\frac{1}{{{p}_{i}}}} \right)}^{-1}},{{\bar{p}}^{*}}=\frac{n\bar{p}}{n-\bar{p}},{{p}_{max}}=\underset{1\le i\le n}{\mathop{max{{p}_{i}}}}\,$,则当$\bar p < n$且${\bar p^*} > {p_{max}}$时,有

$\begin{align} & {{\int }_{\Omega }}\frac{{{\left| u \right|}^{{{p}_{max}}}}}{\parallel u\parallel _{_{{{L}^{{{p}_{max}}}}}}^{{{p}_{max}}}}log\left( \frac{{{\left| u \right|}^{{{p}_{max}}}}}{\parallel u\parallel _{_{{{L}^{{{p}_{max}}}}}}^{{{p}_{max}}}} \right)dx\le \frac{1}{\frac{1-{{p}_{max}}}{{{{\bar{p}}}^{*}}}}log\left( \frac{c\prod\limits_{i=1}^{n}{\parallel {{D}_{i}}u\parallel _{_{{{L}^{{{p}_{i}}}}}}^{{{p}_{ma{{x}^{/n}}}}}}}{\parallel u\parallel _{_{{{L}^{{{p}_{max}}}}}}^{{{p}_{max}}}} \right) \\ & ~ \\ \end{align}$
成立.并可得
${{\int }_{\Omega }}\frac{{{\left| u \right|}^{{{p}_{max}}}}}{\parallel u\parallel _{_{{{L}^{{{p}_{max}}}}}}^{{{p}_{max}}}}log\left( \frac{{{\left| u \right|}^{{{p}_{max}}}}}{\parallel u\parallel _{_{{{L}^{{{p}_{max}}}}}}^{{{p}_{max}}}} \right)dx\le \frac{1}{1-\frac{{{p}_{max}}}{{{{\bar{p}}}^{*}}}}log\left( \frac{{{\left( \frac{c}{n}\sum\limits_{i=1}^{n}{\parallel {{D}_{i}}u{{\parallel }_{{{L}^{{{p}_{i}}}}}}} \right)}^{{{p}_{^{max}}}}}}{\parallel u\parallel _{_{{{L}^{{{p}_{max}}}}}}^{{{p}_{max}}}} \right),$

注 若 1pi=pmax=p<+∞(i=1,2,…,n),则定理1中的对数各向异性Sobolev不等式就成为对数各向同性Sobolev不等式.

定理 2(对数带权各向异性Sobolev不等式) 设u∈W01,(pi) (Ωi),其中1<pii是非负的且满足$\frac{1}{{{\nu }_{i}}}\in {{L}^{{{m}_{i}}}}$(Ω),mi>0,i=1,2,…,n.设${{m}_{i}}\ge \frac{1}{{{p}_{i}}-1}$,并记${{p}_{m}}=\frac{1}{\sum\limits_{i=1}^{n}{\frac{{{m}_{i}}}{{{m}_{i}}{{p}_{i}}}}}$,则当pm>pmax时,有

${{\int }_{\Omega }}\frac{{{\left| u \right|}^{{{p}_{max}}}}}{\parallel u\parallel _{{{L}^{{{p}_{\max }}}}}^{{{p}_{max}}}}~log\left( \frac{{{\left| u \right|}^{{{p}_{max}}}}}{\parallel u\parallel _{{{L}^{{{p}_{\max }}}}}^{{{p}_{max}}}} \right)dx\le \frac{1}{1-\frac{{{p}_{max}}}{{{p}_{m}}}}log\left( \frac{c{{\left( \prod\limits_{i=1}^{n}{{{\left( {{\int }_{\Omega }}{{\nu }_{i}}|{{D}_{i}}u{{|}^{{{p}_{i}}}}dx \right)}^{1/{{p}_{i}}}}} \right)}^{^{{{p}_{max}}/n}}}}{\parallel u\parallel _{{{L}^{{{p}_{\max }}}}}^{{{p}_{max}}}} \right).$
进一步有

${{\int }_{\Omega }}\frac{{{\left| u \right|}^{{{p}_{max}}}}}{\parallel u\parallel _{{{L}^{{{p}_{\max }}}}}^{{{p}_{max}}}}~log\left( \frac{{{\left| u \right|}^{{{p}_{max}}}}}{\parallel u\parallel _{{{L}^{{{p}_{\max }}}}}^{{{p}_{max}}}} \right)dx\le \frac{1}{1-\frac{{{p}_{max}}}{{{p}_{m}}}}log\left( \frac{{{\left( \frac{c}{n}\sum\limits_{i=1}^{n}{{{\left( {{\int }_{\Omega }}{{\nu }_{i}}|{{D}_{i}}u{{|}^{{{p}_{i}}}}dx \right)}^{1/{{p}_{i}}}}} \right)}^{^{{{p}_{max}}}}}}{\parallel u\parallel _{{{L}^{{{p}_{\max }}}}}^{{{p}_{max}}}} \right).$

 当权函数νi=1(i=1,2,…,n)时,由定理2即得定理1中当1<pi 2 定理1的证明

ΩRn中的一个有界开集,对于1≤pi<+∞(i=1,2,…,n),用pmax表示pi中的最大值,pmin表示pi中的最小值,表示pi的调和均值,分别记为

${{p}_{max}}=\underset{1\le i\le n}{\mathop{max{{p}_{i}}}}\,,{{p}_{min}}=\underset{1\le i\le n}{\mathop{min{{p}_{i}}}}\,,=\bar{p}={{\left( \frac{1}{n}\sum\limits_{i=1}^{n}{\frac{1}{{{p}_{i}}}} \right)}^{-1}}.$
各向异性Sobolev空间形如
$\begin{align} & {{W}^{1,({{p}_{i}})}}\left( \Omega \right)=\{u\in {{W}^{1,1}}\left( \Omega \right):{{D}_{i}}u\in {{L}^{{{p}_{i}}}}\left( \Omega \right),i=1,\ldots ,n\}, \\ & {{W}^{1,({{p}_{i}})}}_{0}\left( \Omega \right)=\{u\in W_{0}^{1,1}~\left( \Omega \right):{{D}_{i}}u\in {{L}^{{{p}_{i}}}}\left( \Omega \right),i=1,\ldots ,n\}, \\ \end{align}$
其范数分别为

$\begin{align} & \parallel u{{\parallel }_{W_{0}^{^{1,({{p}_{i}})}}(\Omega )}}={{\int }_{\Omega }}\left| u \right|dx+{{\sum\limits_{i=1}^{n}{\left( {{\int }_{\Omega }}|{{D}_{i}}u{{|}^{{{p}_{i}}}}dx \right)}}^{1/{{p}_{i}}}}, \\ & \parallel u{{\parallel }_{W_{0}^{^{1,({{p}_{i}})}}(\Omega )}}={{\sum\limits_{i=1}^{n}{\left( {{\int }_{\Omega }}|{{D}_{i}}u{{|}^{{{p}_{i}}}}dx \right)}}^{1/{{p}_{i}}}}. \\ \end{align}$

引理 1(各向异性Sobolev不等式) 若$\sum\limits_{i=1}^{n}{\frac{1}{{{p}^{i}}}}>1$,即$\bar p < n$,则存在一个正常数c,使得$\forall u\in W_{0}^{^{1,({{p}_{i}})}}$(Ω),有

${{\left( {{\int }_{\Omega }}{{\left| u \right|}^{{{^{{\bar{p}}}}^{*}}}}dx \right)}^{1{{/}^{{\bar{p}}}}^{*}}}\le c{{\left( \prod\limits_{i=1}^{n}{{{\left( {{\int }_{\Omega }}|{{D}_{i}}u{{|}^{{{p}_{i}}}}dx \right)}^{1/{{p}_{i}}}}} \right)}^{1/n}}=c\prod\limits_{i=1}^{n}{\parallel {{D}_{i}}u\parallel _{_{{{L}^{{{p}_{i}}}}(\Omega )}}^{^{1/n}}},$ (2)
其中$\bar{p}*$满足$\frac{1}{{{^{{\bar{p}}}}^{*}}}=\frac{1}{^{{\bar{p}}}}-\frac{1}{n}$.

注意到

$\prod\limits_{i=1}^{n}{\parallel {{D}_{i}}u\parallel _{_{{{L}^{{{p}_{i}}}}(\Omega )}}^{^{1/n}}}\le \frac{\sum\limits_{i=1}^{n}{\parallel {{D}_{i}}u{{\parallel }_{{{L}^{{{p}_{i}}}}(\Omega )}}}}{n},$
从而由式(2)可推出

${{\left( {{\int }_{\Omega }}{{\left| u \right|}^{{{^{{\bar{p}}}}^{*}}}}dx \right)}^{1{{/}^{{\bar{p}}}}^{*}}}\le \frac{c}{n}\sum\limits_{i=1}^{n}{\parallel {{D}_{i}}u{{\parallel }_{{{L}^{{{p}_{i}}}}(\Omega )}}}.$

下面利用Hölder不等式证明定理 1.

定理 1的证明 ∀θ∈[0,1],记r满足$\frac{1}{r}=\frac{\theta }{{{p}_{\max }}}+\frac{1-\theta }{{{^{{\bar{p}}}}^{*}}}$,则pmaxr≤$\bar{p}*$,从而由Hölder不等式可得

$\parallel u{{\parallel }_{{{L}^{r}}}}\le \parallel u\parallel _{{{L}^{{{p}_{_{\max }}}}}}^{\theta }\parallel u\parallel _{{{L}^{{{^{{\bar{p}}}}^{*}}}}}^{1-\theta },$ (3)
其中$u\in {{L}^{{{p}_{max}}}}\left( \Omega \right)\cap \text{ }{{L}^{\bar{p}*}}$(Ω).对式(3)两边取对数得
$log(\parallel u{{\parallel }_{{{L}^{r}}}})\le \theta log(\parallel u{{\parallel }_{{{L}^{{{p}_{max}}}}}})+\left( 1-\theta \right)log(\parallel u{{\parallel }_{{{L}^{{{^{{\bar{p}}}}^{*}}}}}}).$ (4)
则由式(4)知函数φ:1/r→log(‖u‖Lr)在[0,+∞)是凸函数,即
$\varphi \left( \frac{1}{r} \right)=\varphi \left( \frac{\theta }{{{p}_{max}}}+\frac{1}{{{^{{\bar{p}}}}^{*}}} \right)\le \theta \varphi \left( \frac{1}{{{p}_{max}}} \right)+\left( 1-\theta \right)\varphi \left( \frac{1}{{{^{{\bar{p}}}}^{*}}} \right).$
这里$\varphi \left( \frac{1}{r} \right)=log(\parallel u{{\parallel }_{{{L}^{r}}}}),\varphi \left( \frac{1}{{{p}_{max}}} \right)=log(\parallel u{{\parallel }_{{{L}^{{{p}_{max}}}}}}),\varphi \left( \frac{1}{{{^{{\bar{p}}}}^{*}}} \right)=log(\parallel u{{\parallel }_{{{L}^{{{^{{\bar{p}}}}^{*}}}}}})$.令$\frac{1}{r}=h$,则
$\varphi \left( h \right)=\left( hlog{{\int }_{\Omega }}{{\left| u \right|}^{1/h}}dx \right),$ (5)
$\varphi \prime \left( h \right)=log\left( {{\int }_{\Omega }}{{\left| u \right|}^{\frac{1}{h}}}dx \right)-\frac{1}{h}\frac{{{\int }_{\Omega }}log({{\left| u\left| ) \right|u \right|}^{1/h}}dx}{{{\int }_{\Omega }}{{\left| u \right|}^{1/h}}dx}.~$ (6)
由于φ在[0,+∞)的凸性等价于
$\varphi \prime \left( h \right)\ge \frac{\varphi ({{h}_{0}})-\varphi \left( h \right)}{{{h}_{0}}-h},$ (7)
这里h>h0≥0,则取${{h}_{0}}=\frac{1}{{{^{{\bar{p}}}}^{*}}},h=\frac{1}{{{p}_{max}}}$,把式(5),(6)代入式(7)中得
$-log\left( {{\int }_{\Omega }}{{\left| u \right|}^{{{p}_{max}}}}dx \right)+\frac{{{\int }_{\Omega }}log({{\left| u \right|}^{{{p}_{max}}}}){{\left| u \right|}^{{{p}_{max}}}}dx}{{{\int }_{\Omega }}{{\left| u \right|}^{{{p}_{max}}}}dx}\le \frac{log{{\left( {{\int }_{\Omega }}{{\left| u \right|}^{{{^{{\bar{p}}}}^{*}}}}dx \right)}^{{{p}_{max}}{{/}^{{\bar{p}}}}^{*}}}-log\left( {{\int }_{\Omega }}{{\left| u \right|}^{{{p}_{max}}}}dx \right)}{1-\frac{{{p}_{max}}}{{{^{{\bar{p}}}}^{*}}}}.$ (8)
因为
${{\int }_{\Omega }}\frac{{{\left| u \right|}^{{{p}_{max}}}}}{\parallel u\parallel _{{{L}^{{{p}_{max}}}}}^{{{p}_{max}}}}dx=1,$ (9)
则式(8)中的第一项乘以式(9)可得
${{\int }_{\Omega }}\frac{{{\left| u \right|}^{{{p}_{max}}}}}{\parallel u\parallel _{{{L}^{{{p}_{max}}}}}^{{{p}_{max}}}}~log\left( \frac{{{\left| u \right|}^{{{p}_{max}}}}}{\parallel u\parallel _{{{L}^{{{p}_{max}}}}}^{{{p}_{max}}}} \right)dx\le \frac{1}{1-{{p}_{max}}{{/}^{{\bar{p}}}}^{*}}log\left( \frac{\parallel u\parallel _{{{L}^{{{^{{\bar{p}}}}^{*}}}}}^{{{p}_{max}}}}{\parallel u\parallel _{{{L}^{{{p}_{max}}}}}^{{{p}_{max}}}} \right).$ (10)
由式(10)和引理1可得对数各向异性Sobolev不等式.定理 1得证.

3 定理2的证明

对于每个1<pi<n(i=1,2,…,n)和每个m=(m1,…,mn)∈Rn,设mi>0,令

${{p}_{m}}=n/\left( \sum\limits_{i=1}^{n}{\frac{1+{{m}_{i}}}{{{m}_{i}}{{p}_{i}}}-1} \right),$
则当${{m}_{i}}\ge \frac{1}{{{p}_{i}}-1}$时,由
$\sum\limits_{i=1}^{n}{\frac{1+{{m}_{i}}}{{{m}_{i}}{{p}_{i}}}}=\sum\limits_{i=1}^{n}{\left( \frac{1}{{{m}_{i}}}+1 \right)\frac{1}{{{p}_{i}}}\le }\sum\limits_{i=1}^{n}{\left( {{p}_{i}}-1+1 \right)}\frac{1}{{{p}_{i}}}=n,$
可得${{p}_{m}}\ge \frac{n}{n-1}>1$.设权函数νiΩ上的非负可积函数且满足
${{\nu }_{i}}\in L_{_{loc}}^{1}~\left( \Omega \right),{{\left( \frac{1}{{{\nu }_{i}}} \right)}^{{{m}_{i}}}}\in {{L}^{1}}\left( \Omega \right),{{m}_{i}}\ge \frac{1}{{{p}_{i}}-1}.$
那么带权的各向异性空间形如
$\begin{align} & {{W}^{1,({{p}_{i}})}}(\Omega ,{{\nu }_{i}})=\{u\in {{W}^{1,1}}\left( \Omega \right):{{\nu }_{i}}|{{D}_{i}}u{{|}^{{{p}_{i}}}}\in {{L}^{1}}\left( \Omega \right),i=1,\ldots ,n\}, \\ & W_{_{0}}^{^{1,({{p}_{i}})}}(\Omega ,{{\nu }_{i}})=\{u\in W_{0}^{1,1}\left( \Omega \right):{{\nu }_{i}}|{{D}_{i}}u{{|}^{{{p}_{i}}}}\in {{L}^{1}}\left( \Omega \right),i=1,\ldots ,n\}. \\ \end{align}$
其范数分别为

$\begin{align} & \parallel u{{\parallel }_{{{W}^{1,({{p}_{i}})}}(\Omega ,{{\nu }_{i}})}}={{\int }_{\Omega }}\left| u \right|dx+{{\sum\limits_{i=1}^{n}{\left( {{\int }_{\Omega }}{{\nu }_{i}}|{{D}_{i}}u{{|}^{{{p}_{i}}}}dx \right)}}^{1/{{p}_{i}}}}, \\ & \parallel u{{\parallel }_{W_{0}^{^{1,({{p}_{i}})}}\left( \Omega ,{{\nu }_{i}} \right)}}={{\sum\limits_{i=1}^{n}{\left( {{\int }_{\Omega }}{{\nu }_{i}}|{{D}_{i}}u{{|}^{{{p}_{i}}}}dx \right)}}^{1/{{p}_{i}}}}. \\ \end{align}$

引理 2(带权的各向异性Sobolev不等式) ∀i∈{1,2,…,n},设${{m}_{i}}\ge \frac{1}{{{p}_{i}}-1}$和$\frac{1}{{{\nu }_{i}}}\in {{L}^{{{m}_{i}}}}$(Ω),则$W_{0}^{1,({{p}_{i}})}(\Omega ,{{\nu }_{i}})\subset {{L}^{{{p}_{m}}}}\left( \Omega \right)$,即存在一个正常数c,使得∀u∈W01,(pi) (Ωi),有

$\begin{align} & {{\left( {{\int }_{\Omega }}\left| u \right|{{p}_{m}}dx \right)}^{1/{{p}_{m}}}}\le c{{\left( {{\prod\limits_{i=1}^{n}{\left( {{\int }_{\Omega }}{{\nu }_{i}}|{{D}_{i}}u{{|}^{{{p}_{i}}}}dx \right)}}^{1/{{p}_{i}}}} \right)}^{1/n}}, \\ & {{\left( {{\int }_{\Omega }}\left| u \right|{{p}_{m}}dx \right)}^{1/{{p}_{m}}}}\le \frac{c}{n}{{\sum\limits_{i=1}^{n}{\left( {{\int }_{\Omega }}{{\nu }_{i}}|{{D}_{i}}u{{|}^{{{p}_{i}}}}dx \right)}}^{1/{{p}_{i}}}}. \\ \end{align}$

定理 2的证明 ∀θ∈[0,1],记r满足$\frac{1}{r}=\frac{\theta }{{{p}_{max}}}+\frac{1-\theta }{{{p}_{m}}}$,则pmaxrpm,从而有Hölder不等式

$\parallel u{{\parallel }_{{{L}^{r}}}}\le \parallel u\parallel _{_{{{L}^{{{p}_{max}}}}}}^{\theta }\|u\|_{_{{{L}^{{{p}_{m}}}}}}^{1-\theta },$ (11)
其中u∈Lpmax(Ω)∩Lpm(Ω).现在使用定理1中的证明过程,就可由(11)得不等式
${{\int }_{\Omega }}\frac{{{\left| u \right|}^{{{p}_{max}}}}}{\parallel u\parallel _{{{L}^{{{p}_{max}}}}}^{{{p}_{max}}}}~log\left( \frac{{{\left| u \right|}^{{{p}_{max}}}}}{\parallel u\parallel _{{{L}^{{{p}_{max}}}}}^{{{p}_{max}}}} \right)dx\le \frac{1}{1-{{p}_{max}}/{{p}_{m}}}log\left( \frac{\parallel u\parallel _{{{L}^{{{p}_{m}}}}}^{{{p}_{max}}}}{\parallel u\parallel _{{{L}^{{{p}_{max}}}}}^{{{p}_{max}}}} \right).$ (12)
再由式(12)和引理2即得对数带权各向异性Sobolev不等式.定理 2得证.

参考文献
[1] TANG Qi.Regularity of minimizers of non-isotropic integrals of the calculus of variations[J].Annali di Matematica Pura ed Applicata,1993,164(1):77-87.
Click to display the text
[2] LIONS Jacques Louis.Quelques methodes de resolution des problemes aux limites non lineaires[M].Paris:Gauthier-Villars,1969.
Click to display the text
[3] LEONETTI Francesco,FRANCESCO Siepe.Integrability for solutions to some anisotropic elliptic equations[J].Nonlinear Analysis:Theory,Methods & Applications,2012,75(5):2867-2873.
Click to display the text
[4] LEONETTI Francesco,FRANCESCO Siepe.Global integrability for minimizers of Anisotropic functionals[J].Manuscripta Mathematica,2014,144(1/2):91-98.
Click to display the text
[5] INNAMORATI Alessandra,FRANCESCO Leonetti.Global integrability for weak solutions to some anisotropic elliptic equations[J].Nonlinear Analysis:Theory,Methods & Applications,2015,113(5):430-434.
Click to display the text
[6] GAO Hongya,HUANG Qiuhua.Local regularity for solutions of anisotropic obstacle problems[J].Nonlinear Analysis:Theory,Methods & Applications,2012,75(13):4761-4765.
Click to display the text
[7] MERKER Jochen.Generalizations of logarithmic Sobolev inequalities[J].Discrete and Continuous Dynamical Systems.Series S,2008,1(2):329-338.
Click to display the text
[8] LU Wenduan.On imbedding theorem of spaces of functions with partial dirivativs summable with different powers[J].Vestnik Leningrad State University,1961(7):23-37.
Click to display the text
[9] 陆文端.关于各向异性索波列夫空间的嵌入定理[J].四川大学学报,1979(4):11-27. LU Wenduan.On the imbedding theorems of the anisotropic Sobolev spaces[J].Journal of Sichuan University,1979(4):11-27.
Cited By in Cnki (3)
[10] MARCELLINI Paolo.Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions[J].Archive for Rational Mechanics and Analysis,1989,105(3):267-284.
Click to display the text
[11] BHATTACHARYA Tilak,LEONETTI Francesco.On improved regularity of weak solutions of some degenerate,anisotropic elliptic systems[J].Annali di Matematica Pura ed Applicata,1996,170(1):241-255.
Click to display the text
[12] FRAGALÀ Llaria,GAZZOLA Filippo,KAWOHL Bernd.Existence and nonexistence results for anisotropic quasilinear elliptic equations[J].Annales de l'IHP Analyse non Linéaire,2004,21(5):715-734.
Click to display the text
[13] VÉTOIS Jérôme.A priori estimates for solutions of anisotropic elliptic equations[J].Nonlinear Analysis:Theory,Methods & Applications,2009,71(9):3881-3905.
Click to display the text
[14] KOVALEVSKY Alexander A.Integrability and boundedness of solutions to some anisotropic problems[J].Journal of Mathematical Analysis and Applications,2015,432(2):820-843.
Click to display the text
[15] KOVALEVSKY Alexander A,GORBAN Yuliya S.Degenerate anisotropic variational inequalities with L' -data[J].Comptes Rendus Mathematique,2007,345(8):441-444.
Click to display the text
[16] KOVALEVSKY Alexander A,GORBAN Yuliya S.On T-solutions of degenerate anisotropic elliptic variational inequalities with L'-data[J].Izvestiya:Mathematics,2011,75(1):101-156.
Click to display the text
[17] KOVALEVSKY Alexander A,GORBAN Yuliya S.Solvability of degenerate anisotropic elliptic second order equations with L'-data [J].Electronic Journal of Differential Equations,2013(11):1-17.
Click to display the text
[18] GORBAN Yuliya S,ALEXANDER A Kovalevsky.On the boundedness of solutions of degenerate anisotropic elliptic variational inequalities[J].Results in Mathematics,2014,65(1/2):121-142.
Click to display the text
西安工程大学; 中国纺织服装教育学会主办
0

文章信息

冯廷福, 董艳
FENG Tingfu, DONG Yan
对数各向异性Sobolev不等式
Logarithmic anisotropic Sobolev inequalities
纺织高校基础科学学报, 2016, 29(02): 166-170
Basic Sciences Journal of Textile Universities, 2016, 29(02): 166-170.

文章历史

收稿日期: 2015-08-23

相关文章

工作空间