空间中特定自仿测度的谱性质分析
李敏    
陕西师范大学 数学与信息科学学院, 陕西 西安 710062
摘要: 在三维空间R3中,当M=1/2[p1+p2p1-p3p2-p3p1-p2p1+p3,-p2+p3;-p1+p2,-p1+p3p2+p3],D={0,e1e2e3}时,其中pjZ\{0,±1}(j=1,2,3),e1e2e3R3中的单位向量,对迭代函数系{Φd(x)}d∈D产生的自仿测度μM,D的谱性质进行分析.得到:(1)当pj∈2Z\{0,2}(j=1,2,3)或p1=p2=p3=2时,μM,D是谱测度;(2)当p1p2p3至少有一个数是偶数时,空间L2(μM,D)中存在无限正交系E(Λ)且Λ⊆Z3;(3)当pj∈2Z+1\{±1}(j=1,2,3)时,μM,D不是谱测度,且空间L2(μM,D)中正交指数函数系至多包含4个元素,且数字“4”是最好的.
关键词: 谱测度     正交指数函数系     数字集    
Analysis of spectral for the certain spatial self-affine measure
LI Min     
College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China
Abstract: The spectrality of the affine-measures μM,D produced from iterated function system {Φd(x)d∈D is analyzed when M=1/2[p1+p2, p1-p3, p2-p3; p1-p2, p1+p3,-p2+p3;-p1+p2,-p1+p3, p2+p3],D={0, e1,e2,e3} are in the space R3, where pjZ\{0,±1}(j=1,2,3), e1, e2, e3 are the standard basis of unit column vectors in R3.It is obtained that (1) if pj∈ 2Z\{0, 2}(j=1,2,3) or p1=p2=p3=2, then μM,D is a spectral measure; (2) if there is at least one even number among p1, p2, p3, then there are infinite families of orthogonal exponentials E(Λ) and ΛZ3;(3)if pj∈ 2Z+1\{±1}(j=1,2,3), then μM,D is a non-spectral measure, and there exist at most 4 mutually orthogonal exponential functions in L2(μM,D), where the number 4 is the best.
Key words: spectral measures     orthogonal exponentials     digital set    
1 引言及主要结论

MMn(Z)为n阶整数扩张矩阵,DZn为有限数字集且基数为|D|.由仿射变换组成的迭代函数系{φd(x)=M-1(x+d)}dD产生的自仿测度μ:=μM,D是满足等式

$\mu =1\frac{1}{\left| D \right|}\sum\limits_{d\in D}^{{}}{\mu \circ \phi _{d}^{-1}}$ (1)
的唯一概率测度.它的支撑是该迭代函数系的吸引子T:=T(M,D),且T=$\underset{d\in D}{\mathop{\cup }}\,$φd(T).如果存在集合Λ⊂Rn,使得指数函数系E(Λ):={exp(2πiλ,x〉):λΛ}组成Hilbert空间L2(μM,D)的正交基(Fourier基),则称μM,D为谱测度,ΛμM,D的谱,也称(μM,D)为谱对.设B,SRn为有限集合且|B|=|S|=q,若HB,S=[q-1/2exp(2πib,s〉)]bB,s∈Sq×q阶矩阵,满足HB,SHB,S*=Iq(其中HB,S*HB,S的共轭转置矩阵),则称(B,S)为和谐对.

谱集是由Fuglede[1]引入的,谱测度是谱集的自然推广,在分析与几何中起着重要作用.近年来关于自仿测度μM,D的谱与非谱问题受到研究者广泛关注[2, 3, 4, 5, 6, 7, 8, 9],这些问题均与自仿测度μM,D的Fourier变换${\hat{\mu }}$MD密切相关,其中

${\hat{\mu }}$M,D(ξ)=exp(2πix,ξ〉)dM,D(x)=$\prod\limits_{j=1}^{\infty }{{}}$mD(M*-jξ),ξRn, (2)
这里M*表示M的共轭转置矩阵(实际上,M*=Mt),且
mD(x)=$\frac{1}{\left| D \right|}\sum\limits_{d\in D}^{{}}{{}}$exp(2πid,x〉),(xRn). (3)
关于自仿测度的谱与非谱问题还有以下两个猜测:

猜测1[10] 设MMn(Z)为扩张矩阵,D⊂Zn为有限数字集且0∈D,如果存在S⊂Zn,0∈S,使得(M-1D,S)为和谐对,则μM,D是谱测度.

猜测2[11]  设MMn(Z)为扩张矩阵,DZn为有限数字集,如果|D|∉W(m),这里W(m)是|det(M)|=m的素数因子的非负整数组合,则μM,D不是谱测度,且空间L2(μM,D)中正交指数函数系至多有有限个.

猜测1和猜测2只能在一定条件下证明其成立[7, 10, 11, 12],对于一般情况下是否成立还有待进一步的研究.对于上述M,D,S,由迭代函数系{Ψs(x)=M* -1(x+s)}sS产生的吸引子为T:=T(M*,S),且

T(M*,S)=$\sum\limits_{j=1}^{\infty }{{}}$M* -jsj:sjS. (4)

自仿测度的谱与非谱问题主要在平面上进行讨论,而且结论比较完善[13].而空间上仅对M是对角矩阵或上三角矩阵讨论过[14].对M是任意的三阶矩阵还有一定的难度与复杂性.本文在此基础上,对特殊的三阶矩阵进行讨论,推广文献[14]的结论并得到如下定理.

定理1  对于如下形式的扩张矩阵和数字集

$M = {1 \over 2}\left[ {\matrix{ {{p_1} + {p_2}} & {{p_1} - {p_3}} & {{p_2} - {p_3}} \cr {{p_1} - {p_2}} & {{p_1} + {p_3}} & { - {p_2} + {p_3}} \cr { - {p_1} + {p_2}} & { - {p_1} + {p_3}} & {{p_2} + {p_3}} \cr } } \right],D = \left\{ {\left( {\matrix{ 0 \cr 0 \cr 0 \cr } } \right),\left( {\matrix{ 1 \cr 0 \cr 0 \cr } } \right),\left( {\matrix{ 0 \cr 1 \cr 0 \cr } } \right),\left( {\matrix{ 0 \cr 0 \cr 1 \cr } } \right)} \right\},$ (5)
其中pjZ\{0,±1}(j=1,2,3),下列结论成立:

(1)当pj∈2Z\{0,2}(j=1,2,3)或p1=p2=p3=2时,μM,D是谱测度;

(2)当p1,p2,p3中至少有一个数是偶数时,空间L2M,D)中存在无限正交系E(Λ)且Λ⊆Z3;

(3)当pj∈2Z+1\{±1}(j=1,2,3)时,μM,D不是谱测度,且空间L2(μM,D)中正交指数函数系至多包含4个元素,且数字“4”是最好的.

2 定理1的证明

MMn(Z)为n阶整数扩张矩阵,DZn为有限数字集,且0∈D.若存在SZn为有限子集且0∈S,使得(M-1D,S)为和谐对,则由共轭迭代函数系{φs(x)=M*x+s}sS产生的不变子集为Λ(M,S),且M*Λ(M,S)+S=Λ(M,S).当用Λ(M,S)表示0在迭代函数系{φs(x)}sS下的扩张轨迹时,

Λ(M,S):={$\sum\limits_{j=0}^{k-1}{{}}$M*jsj:k≥1,sjS}. (6)
E(Λ(M,S))是空间L2(μM,D)的无限正交系,但不一定是空间L2(μM,D)的正交基[15].为了确保E(Λ(M,S))在空间L2(μM,D)中的完备性,Strichartz[5]得到如下定理.

定理A  设MMn(Z)为扩张矩阵,D,SZn为有限子集,使得(M-1D,S)为和谐对且0DS.假设函数mM-1D(x)的零点集Z(mM-1D(x))与T(M*,S)不相交,则Λ(M,S)是μM,D的谱.

该定理也是证明μM,D为谱测度的常用方法,对于形如式(5)中的MD,令

$P = {1 \over 2}\left[ {\matrix{ \matrix{ 1 \hfill \cr 1 \hfill \cr - 1 \hfill \cr} & \matrix{ 1 \hfill \cr - 1 \hfill \cr 1 \hfill \cr} & \matrix{ - 1 \hfill \cr 1 \hfill \cr 1 \hfill \cr} \cr } } \right],则{P^{ - 1}} = \left[ {\matrix{ \matrix{ 1 \hfill \cr 1 \hfill \cr 0 \hfill \cr} & \matrix{ 1 \hfill \cr 0 \hfill \cr 1 \hfill \cr} & \matrix{ 0 \hfill \cr 1 \hfill \cr 1 \hfill \cr} \cr } } \right].$
从而有
${M_0}: = {P^{ - 1}}MP = \left[ {\matrix{ \matrix{ {p_1} \hfill \cr 0 \hfill \cr 0 \hfill \cr} & \matrix{ 0 \hfill \cr {p_2} \hfill \cr 0 \hfill \cr} & \matrix{ 0 \hfill \cr 0 \hfill \cr {p_3} \hfill \cr} \cr } } \right],{D_0} = {P^{ - 1}}D\left\{ {\left( {\matrix{ 0 \cr 0 \cr 0 \cr } } \right),\left( {\matrix{ 1 \cr 1 \cr 0 \cr } } \right),\left( {\matrix{ 1 \cr 0 \cr 1 \cr } } \right),\left( {\matrix{ 0 \cr 1 \cr 1 \cr } } \right)} \right\}.$ (7)
由相似变换不改变自仿测度的谱性质可知,μM,DμM0,D0的谱性质相同.因此可以通过证明μM0,D0的谱性质,来得到μM,D的谱性质,即得到定理1的证明.

定理2  对于式(7)中的整数扩张矩阵M0和数字集D0,有下列结论成立:

(1)当pj∈2Z\{0,2}(j=1,2,3)或p1=p2=p3=2时,μM0,D0是谱测度;

(2)当p1,p2,p3中至少有一个数是偶数时,空间L2(μM0,D0)中存在无限正交系E(Λ0)且Λ0Z3;

(3)当pj∈2Z+1\{±1}(j=1,2,3)时,μM0,D0不是谱测度,且空间L2(μM0,D0)中正交指数函数系至多包含4个元素,且数字“4”是最好的.

证明  (1)证明当pj∈2Z\{0,2}(j=1,2,3)时,μM0,D0是谱测度.令

${S_0} = \left\{ {\left( \matrix{ 0 \hfill \cr 0 \hfill \cr 0 \hfill \cr} \right)\left( \matrix{ {p_1}/2 \hfill \cr 0 \hfill \cr 0 \hfill \cr} \right),\left( \matrix{ 0 \hfill \cr {p_2}/2 \hfill \cr 0 \hfill \cr} \right),\left( \matrix{ 0 \hfill \cr 0 \hfill \cr {p_3}/2 \hfill \cr} \right)} \right\},$ (8)
计算可知
(M0-1D0,S0)是和谐对,且 T(M0*,S0)=$\sum\limits_{j=1}^{\infty }{{}}$M0*-jsj:sjS0=
$\eqalign{ & \left\{ {\sum\limits_{j = 1}^\infty {} \left\{ {\left( {\matrix{ \matrix{ p_1^{ - j} \hfill \cr 0 \hfill \cr 0 \hfill \cr} & \matrix{ 0 \hfill \cr p_2^{ - j} \hfill \cr 0 \hfill \cr} & \matrix{ 0 \hfill \cr 0 \hfill \cr p_3^{ - j} \hfill \cr} \cr } } \right)\left( \matrix{ {S_{j,1}} \hfill \cr {S_{j,2}} \hfill \cr {S_{j,3}} \hfill \cr} \right):\left( \matrix{ {S_{j,1}} \hfill \cr {S_{j,2}} \hfill \cr {S_{j,3}} \hfill \cr} \right)} \right\} \in {S_0}} \right\} = \cr & \left\{ {\sum\limits_{j = 1}^\infty {} \left\{ {\left( \matrix{ {S_{j,1}}/p_1^j \hfill \cr {S_{j,2}}/p_2^j \hfill \cr {S_{j,3}}/p_3^j \hfill \cr} \right):\left( \matrix{ {S_{j,1}} \hfill \cr {S_{j,2}} \hfill \cr {S_{j,3}} \hfill \cr} \right)} \right\} \in {S_0}} \right\}. \cr} $
(9)
容易得到,∀x=(x1,x2,x3)tT(M0*,S0),可以得到
$\left| {{x_1}} \right| \le {{\left| {{p_1}} \right|} \over {2\left( {\left| {{p_1}} \right| - 1} \right)}},\left| {{x_2}} \right| \le {{\left| {{p_2}} \right|} \over {2\left( {\left| {{p_2}} \right| - 1} \right)}},\left| {{x_3}} \right| \le {{\left| {{p_3}} \right|} \over {2\left( {\left| {{p_3}} \right| - 1} \right)}}.$ (10)
因此,若p1,p2,p3∈2Z\{0,±2},则T(M0*,S0)⊂[-2/3,2/3]3.另外由式(9)可知,如果对某一个j∈{1,2,3},pj=-2,则当x=(x1,x2,x3)tT(M0*,S0)时,对同样的j∈{1,2,3},有xj∈[-1/3,2/3]成立.综上可知,当p1,p2,p3∈2Z\{0,2}时,有

T(M0*,S0)⊂[-2/3,2/3]3. (11)

对于式(7)中的数字集D0,由

mD0(x)=$\frac{1}{4}$[1+exp(2πi(x1+x2))+exp(2πi(x1+x3))+exp(2πi(x2+x3))]=0,
x=(x1,x2,x3)tR3.
(12)
可得
$\left( i \right)\left\{ \matrix{ {x_1} + {x_2} = 1/2 + {k_1} \hfill \cr {x_1} + {x_3} = a + {k_2} \hfill \cr {x_2} + {x_3} = 1/2 + a + {k_3} \hfill \cr} \right.或\left( {ii} \right)\left\{ \matrix{ {x_1} + {x_2} = 1/2 + a + {k_1} \hfill \cr {x_1} + {x_3} = 1/2 + {k_2} \hfill \cr {x_2} + {x_3} = a + {k_3} \hfill \cr} \right.或\left( {iii} \right)\left\{ \matrix{ {x_1} + {x_2} = a + {k_1} \hfill \cr {x_1} + {x_3} = 1/2 + a + {k_2} \hfill \cr {x_2} + {x_3} = 1/2 + {k_3} \hfill \cr} \right.$ (13)
其中k1,k2,k3Z,aR.解式(13)可得
$\left( i \right)\left\{ \matrix{ {x_1} = {{{k_1} + {k_2} - {k_3}} \over 2} \hfill \cr {x_2} = {{1 + {k_1} - {k_2} + {k_3}} \over 2} \hfill \cr {x_2} = a - {{{k_1} - {k_2} - {k_3}} \over 2} \hfill \cr} \right.或\left( {ii} \right)\left\{ \matrix{ {x_1} = {{1 + {k_1} + {k_2} - {k_3}} \over 2} \hfill \cr {x_2} = a + {{{k_1} - {k_2} + {k_3}} \over 2} \hfill \cr {x_3} = {{ - {k_1} + {k_2} + {k_3}} \over 2} \hfill \cr} \right.或\left( {iii} \right)\left\{ \matrix{ {x_1} = a + {{{k_1} + {k_2} - {k_3}} \over 2} \hfill \cr {x_2} = {{{k_1} - {k_2} + {k_3}} \over 2} \hfill \cr {x_3} = {{1 - {k_1} + {k_2} + {k_3}} \over 2} \hfill \cr} \right..$ (14)
其中k1,k2,k3Z,aR.化简式(14)即可得式(12)的解为A1A2…∪A6,其中:
$\eqalign{ & {A_1} = \left\{ {\left( \matrix{ {k_1} \hfill \cr 1/2 + {k_2} \hfill \cr {a_1} + {k_3} \hfill \cr} \right):{a_1} \in R,{k_1},{k_2},{k_3} \in Z} \right\} \subset {R^3}; \cr & {A_2} = \left\{ {\left( \matrix{ 1/2 + {k_4} \hfill \cr {k_5} \hfill \cr 1/2 + {a_2} + {k_6} \hfill \cr} \right):{a_2} \in R,{k_4},{k_5},{k_6} \in Z} \right\} \subset {R^3}; \cr & {A_3} = \left\{ {\left( \matrix{ 1/2 + {k_7} \hfill \cr {a_3} + {k_8} \hfill \cr {k_9} \hfill \cr} \right):{a_3} \in R,{k_7},{k_8},{k_9} \in Z} \right\} \subset {R^3}; \cr & {A_4} = \left\{ {\left( \matrix{ {k_{10}} \hfill \cr 1/2 + {a_4} + {k_{11}} \hfill \cr 1/2 + {k_{12}} \hfill \cr} \right):{a_4} \in R,{k_{10}},{k_{11}},{k_{12}} \in Z} \right\} \subset {R^3}; \cr & {A_5} = \left\{ {\left( \matrix{ {a_5} + {k_{13}} \hfill \cr {k_{14}} \hfill \cr 1/2 + {k_{15}} \hfill \cr} \right):{a_5} \in R,{k_{13}},{k_{14}},{k_{15}} \in Z} \right\} \subset {R^3}; \cr & {A_6} = \left\{ {\left( \matrix{ 1/2 + {a_6} + {k_{16}} \hfill \cr 1/2 + {k_{17}} \hfill \cr {k_{18}} \hfill \cr} \right):{a_6} \in R,{k_{16}},{k_{17}},{k_{18}} \in Z} \right\} \subset {R^3}. \cr} $ (15)
由式(12)和(15)可得
Z(mD0(x))={xR3:mD0(x)=0}=A1A2…∪A6. (16)

因为mM0-1D0(x)=mD0(M0*-1x),所以

Z(mM0-1D0(x))=M0*Z(mD0(x))=M0*A1M0*A2…∪M0*A6. (17)
又因为
$$M_0^*{A_1} = \left( {\matrix{ \matrix{ {p_1} \hfill \cr 0 \hfill \cr 0 \hfill \cr} & \matrix{ 0 \hfill \cr {p_2} \hfill \cr 0 \hfill \cr} & \matrix{ 0 \hfill \cr 0 \hfill \cr {p_3} \hfill \cr} \cr } } \right)\left( \matrix{ {k_1} \hfill \cr 1/2 + {k_2} \hfill \cr {a_1} + {k_3} \hfill \cr} \right) = \left( \matrix{ {k_1}{p_1} \hfill \cr \left( {1/2 + {k_2}} \right){p_2} \hfill \cr \left( {{a_1} + {k_3}} \right){p_3} \hfill \cr} \right) = \left( \matrix{ {x_1} \hfill \cr {x_2} \hfill \cr {x_3} \hfill \cr} \right).$$ (18)
因此,如果pj∈2Z\{0,2}(j=1,2,3),则式(18)中的|x2|=|(1/2+k2)p2|≥1,从而M0*A1∩[-2/3,2/3]3=∅.同理可证,M0*Ai∩[-2/3,2/3]3=∅,i=2,3,…,6.从而可知
Z(mM0-1D0(x))∩[-2/3,2/3]3=∅. (19)
由式(11)和(19),以及定理A可知,对于式(8)中的S0Z3,Λ0(M0,S0)是μM0,D0的谱.即μM0,D0是谱测度且谱为Λ0(M0,S0).

其次,当p1=p2=p3=2时,由文献[16]可知μM0,D0的谱测度.综上证明可知结论(1)成立.

(2)当p1,p2,p3中至少有一个数是偶数时,设p1∈2Z\{0}.因为

${{a}_{1}}=\left( \begin{matrix} 1/2 \\ 0 \\ 0 \\ \end{matrix} \right),{{a}_{2}}=\left( \begin{matrix} 0 \\ 1/2 \\ 0 \\ \end{matrix} \right),{{a}_{3}}=\left( \begin{matrix} 0 \\ 0 \\ 1/2 \\ \end{matrix} \right)\in \left\{ x\in \left[ 0,1{{)}^{3}}:{{m}_{{{D}_{0}}}}(x)=0 \right. \right\},$
M0α1Z3,则由文献[17]的定理2可知,空间L2(μM0,D0)中存在无限正交系E(Λ0)且Λ0Z3.同理可证其他情形,故该结论成立.

(3)由式(16)可知,

${{\Theta }_{0}}:=Z({{m}_{{{D}_{0}}}}(x))={{A}_{1}}\bigcup {{A}_{2}}\cdots \bigcup {{A}_{6}},$ (20)
$\begin{matrix} {{Z}_{1}}({{a}_{1}})=\left\{ \left[ \begin{matrix} {{k}_{1}} \\ 1/2+{{k}_{2}} \\ {{a}_{1}}+{{k}_{3}} \\ \end{matrix} \right]:{{k}_{1}},{{k}_{2}},{{k}_{3}}\in \text{Z} \right\}\subset {{\text{R}}^{3}}; \\ {{Z}_{2}}({{a}_{2}})=\left\{ \left[ \begin{matrix} 1/2+{{k}_{4}} \\ {{k}_{5}} \\ 1/2+{{a}_{2}}+{{k}_{6}} \\ \end{matrix} \right]:{{k}_{4}},{{k}_{5}},{{k}_{6}}\in \text{Z} \right\}\subset {{\text{R}}^{3}}; \\ {{Z}_{3}}({{a}_{3}})=\left\{ \left[ \begin{matrix} 1/2+{{k}_{7}} \\ {{a}_{3}}+{{k}_{5}} \\ {{k}_{9}} \\ \end{matrix} \right]:{{k}_{7}},{{k}_{8}},{{k}_{9}}\in \text{Z} \right\}\subset {{\text{R}}^{3}}; \\ {{Z}_{4}}({{a}_{4}})=\left\{ \left[ \begin{matrix} {{k}_{10}} \\ 1/2+{{a}_{4}}+{{k}_{11}} \\ 1/2+{{k}_{12}} \\ \end{matrix} \right]:{{k}_{10}},{{k}_{11}},{{k}_{12}}\in \text{Z} \right\}\subset {{\text{R}}^{3}}; \\ {{Z}_{5}}({{a}_{5}})=\left\{ \left[ \begin{matrix} {{a}_{5}}+{{k}_{13}} \\ {{k}_{14}} \\ 1/2+{{k}_{15}} \\ \end{matrix} \right]:{{k}_{13}},{{k}_{14}},{{k}_{15}}\in \text{Z} \right\}\subset {{\text{R}}^{3}}; \\ {{Z}_{6}}({{a}_{6}})=\left\{ \left[ \begin{matrix} 1/2+{{a}_{6}}+{{k}_{16}} \\ 1/2+{{k}_{17}} \\ {{k}_{18}} \\ \end{matrix} \right]:{{k}_{16}},{{k}_{17}},{{k}_{18}}\in \text{Z} \right\}\subset {{\text{R}}^{3}}. \\ \end{matrix}$ (22)
再令B=R\(Z∪(1/2+Z)).则
${{A}_{j}}=\underset{{{a}_{j}}\in \text{R}}{\mathop{\bigcup }}\,{{Z}_{j}}({{a}_{i}})=\left( \underset{{{a}_{j}}\in \text{R}}{\mathop{\bigcup }}\,{{Z}_{j}}({{a}_{i}}) \right)\bigcup \left( \underset{{{a}_{j}}\in 1/2+\text{Z}}{\mathop{\bigcup }}\,{{Z}_{j}}({{a}_{i}}) \right)\bigcup \left( \underset{{{a}_{j}}\in \text{B}}{\mathop{\bigcup }}\,{{Z}_{j}}({{a}_{i}}) \right),j=1,2,\cdots 6.$ (22)
由式(21),经过计算可知

$\begin{align} & \underset{{{a}_{1}}\in \text{R}}{\mathop{\bigcup }}\,{{Z}_{1}}({{a}_{1}})=\underset{{{a}_{6}}\in 1/2+\text{Z}}{\mathop{\bigcup }}\,{{Z}_{6}}({{a}_{6}}),\underset{{{a}_{2}}\in \text{R}}{\mathop{\bigcup }}\,{{Z}_{2}}({{a}_{2}})=\underset{{{a}_{5}}\in 1/2+\text{Z}}{\mathop{\bigcup }}\,{{Z}_{5}}({{a}_{5}}),\underset{{{a}_{3}}\in \text{R}}{\mathop{\bigcup }}\,{{Z}_{3}}({{a}_{3}})=\underset{{{a}_{2}}\in 1/2+\text{Z}}{\mathop{\bigcup }}\,{{Z}_{2}}({{a}_{2}}), \\ & \underset{{{a}_{4}}\in \text{R}}{\mathop{\bigcup }}\,{{Z}_{4}}({{a}_{4}})=\underset{{{a}_{6}}\in 1/2+\text{Z}}{\mathop{\bigcup }}\,{{Z}_{1}}({{a}_{1}}),\underset{{{a}_{5}}\in \text{R}}{\mathop{\bigcup }}\,{{Z}_{5}}({{a}_{5}})=\underset{{{a}_{4}}\in 1/2+\text{Z}}{\mathop{\bigcup }}\,{{Z}_{4}}({{a}_{4}}),\underset{{{a}_{6}}\in \text{R}}{\mathop{\bigcup }}\,{{Z}_{6}}({{a}_{6}})=\underset{{{a}_{3}}\in 1/2+\text{Z}}{\mathop{\bigcup }}\,{{Z}_{3}}({{a}_{3}}). \\ \end{align}$ (23)

${{B}_{j}}=\underset{{{a}_{j}}\in \text{Z}}{\mathop{\bigcup }}\,{{Z}_{j}}({{a}_{i}}),{{{\tilde{B}}}_{j}}=\underset{{{a}_{j}}\in \text{B}}{\mathop{\bigcup }}\,{{Z}_{j}}({{a}_{i}}),j=1,2,\cdots 6.$ (24)
由式(20)~(24),可得

${{\Theta }_{0}}=\left( \underset{j=1}{\overset{6}{\mathop{\bigcup }}}\,{{B}_{j}} \right)\bigcup \left( \underset{j=1}{\overset{6}{\mathop{\bigcup }}}\,{{{\tilde{B}}}_{j}} \right),且,{{B}_{1}},{{B}_{2}},\cdots {{B}_{6}},{{{\tilde{B}}}_{1}},{{{\tilde{B}}}_{2}},\cdots {{{\tilde{B}}}_{6}}互不相交.$ (25)

因为pj∈2Z+1\{±1}(j=1,2,3),所以计算可得

$M_{0}^{*}{{A}_{1}}=\left[ \begin{matrix} {{p}_{1}}{{k}_{1}} \\ (1/2+{{k}_{2}}){{p}_{2}} \\ ({{a}_{1}}+{{k}_{3}}){{p}_{3}} \\ \end{matrix} \right]\subseteq \left[ \begin{matrix} {{k}_{1}} \\ 1/2+{{k}_{2}} \\ {{a}_{1}}+{{k}_{3}} \\ \end{matrix} \right]={{A}_{1}}.$
同理可得,M0*AjAj(j=2,3,…,6).由式(20)即可得出
$M_{0}^{*}{{\Theta }_{0}}\subseteq {{\Theta }_{0}}.$ (26)
因此,由式(25)和(26),可得
$\begin{align} & Z({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}}(\zeta ))=\left\{ {{\text{R}}^{3}}:{{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}}(\zeta )=0 \right\}=\underset{j=1}{\overset{\infty }{\mathop{\bigcup }}}\,M_{0}^{*}{{\Theta }_{0}}={{M}_{0}}{{\Theta }_{0}}= \\ & \left( \underset{j=1}{\overset{6}{\mathop{\bigcup }}}\,{{M}_{0}}({{B}_{j}}) \right)\bigcup \left( \underset{j=1}{\overset{6}{\mathop{\bigcup }}}\,{{M}_{0}}({{{\tilde{B}}}_{j}}) \right):=\left( \underset{j=1}{\overset{6}{\mathop{\bigcup }}}\,{{Z}_{j}} \right)\bigcup \left( \underset{j=1}{\overset{6}{\mathop{\bigcup }}}\,{{{\tilde{Z}}}_{j}} \right). \\ \end{align}$ (27)
其中

${{Z}_{j}}={{M}_{0}}({{B}_{j}}),{{{\tilde{Z}}}_{j}}={{M}_{0}}({{{\tilde{B}}}_{j}}),j=1,2,\cdots 6.$ (28)

计算可得以下引理.

引理1  式(28)中的ZjZj(j=1,2,…,6)满足下面的性质:

\[\begin{align} & (\text{a}){{Z}_{1}},{{Z}_{2}},\cdots ,{{Z}_{6}},{{{\tilde{Z}}}_{1}},{{{\tilde{Z}}}_{2}},\cdots ,{{{\tilde{Z}}}_{6}}互不相交; \\ & (\text{b})Z({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}})\bigcap{{{\text{Z}}^{3}}}=\underset{j=1}{\mathop{\overset{6}{\mathop{\cup }}\,}}\,({{Z}_{j}}\bigcup{{{{\tilde{Z}}}_{j}}})\bigcap{{{\text{Z}}^{3}}}\text{=}\varnothing \\ & (\text{c}){{Z}_{j}}+{{Z}_{j}}\subseteq {{\text{Z}}^{3}},{{Z}_{j}}\text{=}-{{Z}_{j}},{{{\tilde{Z}}}_{j}}\text{=}-{{{\tilde{Z}}}_{j}}j=1,2,\cdots 6 \\ & (\text{d}){{{\tilde{Z}}}_{j}}\pm {{{\tilde{Z}}}_{j}}\subseteq {{\text{R}}^{3}}\backslash Z({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}})\bigcup{{{Z}_{5}}}(j=1,2),{{{\tilde{Z}}}_{j}}\pm {{{\tilde{Z}}}_{j}}\subseteq {{\text{R}}^{3}}\backslash Z({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}}) \\ & \bigcup{{{Z}_{1}}}(j=3,4),{{{\tilde{Z}}}_{j}}\pm {{{\tilde{Z}}}_{j}}\pm {{\text{R}}^{3}}\backslash Z({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}})\bigcup{{{Z}_{3}}}(j=5,6); \\ & (\text{e}){{{\tilde{Z}}}_{1}}-{{{\tilde{Z}}}_{2}}\subseteq {{\text{R}}^{3}}\backslash Z({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}})\bigcup{{{Z}_{6}}},{{{\tilde{Z}}}_{3}}-{{{\tilde{Z}}}_{4}}\subseteq {{\text{R}}^{3}}\backslash Z({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}}) \\ & \bigcup{{{Z}_{2}}},{{{\tilde{Z}}}_{5}}-{{{\tilde{Z}}}_{6}}\subseteq {{\text{R}}^{3}}\backslash Z({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}})\bigcup{{{Z}_{4}}},({{{\tilde{Z}}}_{1}}-{{{\tilde{Z}}}_{j}})\bigcap{Z}({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}}) \\ & =\varnothing (j=3,4,5,6),({{{\tilde{Z}}}_{2}}-{{{\tilde{Z}}}_{j}})\bigcap{Z}({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}})=\varnothing (j=3,4,5,6), \\ & ({{{\tilde{Z}}}_{3}}-{{{\tilde{Z}}}_{j}})\bigcap{Z}({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}})=\varnothing (j=5,6),({{{\tilde{Z}}}_{4}}-{{{\tilde{Z}}}_{j}})\bigcap{Z}({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}})=\varnothing (j=5,6); \\ & (\text{f})({{Z}_{1}}-{{Z}_{2}})\bigcap{Z}({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}})=\varnothing ({{Z}_{3}}-{{Z}_{4}})\bigcap{Z}({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}})=\varnothing ({{Z}_{5}}-{{Z}_{6}})\bigcap{Z}({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}})=\varnothing ; \\ & (\text{g})({{Z}_{1}}-{{{\tilde{Z}}}_{j}})\bigcap{Z}({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}})=\varnothing (j=1,2,5,6),({{Z}_{2}}-{{{\tilde{Z}}}_{j}})\bigcap{Z}({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}}) \\ & =\varnothing (j=1,2,5,6),({{Z}_{3}}-{{{\tilde{Z}}}_{j}})\bigcap{Z}({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}})=\varnothing (j=1,2,3,4), \\ & ({{Z}_{4}}-{{{\tilde{Z}}}_{j}})\bigcap{Z}({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}})=\varnothing (j=1,2,3,4),({{Z}_{5}}-{{{\tilde{Z}}}_{j}})\bigcap{Z}({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}}) \\ & =\varnothing (j=3,4,5,6),({{Z}_{6}}-{{{\tilde{Z}}}_{j}})\bigcap{Z}({{{\hat{\mu }}}_{{{M}_{0}},{{D}_{0}}}})=\varnothing (j=3,4,5,6). \\ & (\text{h}){{Z}_{1}}-{{Z}_{3}}={{Z}_{6}},{{Z}_{1}}-{{Z}_{4}}={{Z}_{5}},{{Z}_{1}}-{{Z}_{5}}={{Z}_{4}},{{Z}_{1}}-{{Z}_{6}} \\ & ={{Z}_{3}},{{Z}_{2}}-{{Z}_{3}}={{Z}_{5}},{{Z}_{2}}-{{Z}_{4}}={{Z}_{6}},{{Z}_{2}}-{{Z}_{5}}={{Z}_{3}}, \\ & {{Z}_{2}}-{{Z}_{6}}={{Z}_{4}},{{Z}_{3}}-{{Z}_{5}}={{Z}_{2}},{{Z}_{3}}-{{Z}_{6}}={{Z}_{1}},{{Z}_{4}}-{{Z}_{5}}={{Z}_{1}},{{Z}_{4}}-{{Z}_{6}}={{Z}_{2}}; \\ & (\text{i}){{Z}_{1}}-{{{\tilde{Z}}}_{3}}={{{\tilde{Z}}}_{3}},{{Z}_{1}}-{{{\tilde{Z}}}_{4}}={{{\tilde{Z}}}_{4}},{{Z}_{2}}-{{{\tilde{Z}}}_{3}}={{{\tilde{Z}}}_{4}},{{Z}_{2}}-{{{\tilde{Z}}}_{4}} \\ & ={{{\tilde{Z}}}_{3}},{{Z}_{3}}-{{{\tilde{Z}}}_{5}}={{{\tilde{Z}}}_{5}},{{Z}_{3}}-{{{\tilde{Z}}}_{6}}={{{\tilde{Z}}}_{6}},{{Z}_{4}}-{{{\tilde{Z}}}_{5}}={{{\tilde{Z}}}_{6}},{{Z}_{4}}-{{{\tilde{Z}}}_{6}} \\ & ={{{\tilde{Z}}}_{5}},{{Z}_{5}}-{{{\tilde{Z}}}_{1}}={{{\tilde{Z}}}_{1}},{{Z}_{5}}-{{{\tilde{Z}}}_{2}}={{{\tilde{Z}}}_{2}},{{Z}_{6}}-{{{\tilde{Z}}}_{1}}={{{\tilde{Z}}}_{2}},{{Z}_{6}}-{{{\tilde{Z}}}_{2}}={{{\tilde{Z}}}_{1}}. \\ \end{align}\]

假设λ1λ2,…,λ5R3是使得下面的5个指数函数

exp(2πiλ1,x〉),exp(2πiλ2,x〉),exp(2πiλ3,x〉),exp(2πiλ4,x〉),exp(2πiλ5,x〉)
在空间L2(μM0,D0)中相互正交的5个数,则λj-λk(1≤jk≤5)在μM0,D0(ξ)的Fourier变换$\hat{\mu }$M0,D0(ξ)的零点集Z($\hat{\mu }$M0,D0(ξ))中,因此可知
λj-λkZ($\hat{\mu }$M0,D0(ξ)). (29)
由式(27)和(29)可知,下面的10个差
$\begin{matrix} {{\lambda }_{2}}-{{\lambda }_{1}}, & {{\lambda }_{3}}-{{\lambda }_{1}}, & {{\lambda }_{4}}-{{\lambda }_{1}}, & {{\lambda }_{5}}-{{\lambda }_{1}} \\ {} & {{\lambda }_{3}}-{{\lambda }_{2}} & {{\lambda }_{4}}-{{\lambda }_{2}} & {{\lambda }_{5}}-{{\lambda }_{2}} \\ {} & {} & {{\lambda }_{4}}-{{\lambda }_{3}} & {{\lambda }_{5}}-{{\lambda }_{3}} \\ {} & {} & {} & {{\lambda }_{5}}-{{\lambda }_{4}} \\ \end{matrix}$ (30)
属于Z1,Z2,…,Z6,${\tilde{Z}}$1,${\tilde{Z}}$2,…,${\tilde{Z}}$6这12个集合的并中.令

$G=\bigcup\limits_{j=1}^{6}{{{Z}_{j}}},\tilde{G}=\bigcup\limits_{j=1}^{6}{{{{\tilde{Z}}}_{j}}},$ (31)
λ2-λ1,λ3-λ1,λ4-λ1,λ5-λ1G∪${\tilde{G}}$,且G∩${\tilde{G}}$=∅. (32)
结合式(31)分以下几个情形证明该定理.

情形1  4-0(或0-4),即式(32)中的4个差全属于G或${\tilde G}$.

情形2  3-1(或1-3),即G或${\tilde G}$这两个集合中的一个集合包含式(32)中的3个差,余下一个差在另一个集合中.

情形3  2-2,即G或${\tilde G}$各包含式(32)中的2个差.

通过下面的步骤1,2,3说明情形1,2,3均不成立,即可证得定理2(3).

步骤1  集合G至多包含式(32)中的3个差.

证明  首先证明Zj(j=1,2,…,6)至多包含式(32)中的一个差.假设存在某个j∈{1,2,…,6},使得Zj包含式(32)中的2个差,设λ2-λ1,λ3-λ1Z1,则由引理1(c)可知

λ3-λ2=(λ3-λ1)-(λ2-λ1)∈Z1-Z1Z3,
再由引理1(b)及式(29)即可推出矛盾.

其次证明ZjZj+1(j=1,3,5)不能同时包含式(32)中的差.假设Z1Z2包含式(32)中的差,设λ3-λ1Z1,λ2-λ1Z2,则

λ3-λ2=(λ3-λ1)-(λ2-λ1)∈Z1-Z2,
由引理1(f)及式(29)即可推出矛盾.

由以上分析可知,集合G至多包含式(32)中的3个差.

步骤2  集合G至多包含式(32)中的2个差.

证明  首先证明${\tilde{Z}}$j(j=1,2,…,6)至多包含式(32)中的2个差.假设存在某个j∈{1,2,…,6},使得Zj包含式(32)中的3个差,设λ2-λ1,λ3-λ1λ4-λ1Z1,则由引理1(d)可知

λ4-λ2=(λ4-λ1)-(λ2-λ1)∈${\tilde{Z}}$1-${\tilde{Z}}$1Z5, (33)
λ43=(λ41)-(λ31)∈${\tilde{Z}}$1-${\tilde{Z}}$1Z5. (34)
由式(33),(34)以及引理1(c)可知
λ3-λ2=(λ4-λ2)-(λ4-λ3)∈${\tilde{Z}}$5-${\tilde{Z}}$5Z3,
再由引理1(b)及式(29)即可推出矛盾.

其次由引理1(d)和(e)可知,式(32)中的4个差全在${\tilde{Z}}$j∪${\tilde{Z}}$j+1(j=1,3,5)中.若λ3-λ1∈${\tilde{Z}}$1,λ2-λ1∈${\tilde{Z}}$3,则

λ3-λ2=(λ3-λ1)-(λ2-λ1)∈${\tilde{Z}}$1-${\tilde{Z}}$3,
由引理1(e)及式(29)即可推出矛盾.

最后证明集合${\tilde{G}}$至多包含式(32)中的2个差.假设式(32)中的4个差全在${\tilde{Z}}$1∪${\tilde{Z}}$2中,由于${\tilde{Z}}$j(j=1,2,…,6)至多包含式(32)中的2个差,设

λ5-λ1,λ4-λ1∈${\tilde{Z}}$1,λ3-λ1,λ2-λ1∈${\tilde{Z}}$2.
由引理1(e)可知
λ5-λ3=(λ5-λ1)-(λ3-λ1)∈${\tilde{Z}}$1-${\tilde{Z}}$2Z6, (35)
λ5-λ2=(λ5-λ1)-(λ2-λ1)∈${\tilde{Z}}$1-${\tilde{Z}}$2Z6. (36)
结合引理1(c)以及式(35),(36),可得
λ3-λ2=(λ5-λ2)-(λ5-λ3)∈Z6-Z6Z3,
由引理1(b)及式(29)即可推出矛盾.因此,当λ5-λ1,λ4-λ1∈${\tilde{Z}}$1时,${\tilde{Z}}$2中只能包含式(32)中的一个差,设λ3-λ1∈${\tilde{Z}}$2.同理可证,当λ3-λ1∈${\tilde{Z}}$2时,${\tilde{Z}}$1只能包含式(32)中的一个差.同理可证其他情形.综上所述,集合${\tilde{G}}$至多包含式(32)中的2个差,或全在某个${\tilde{Z}}$j(j=1,2,…,6)中,或${\tilde{Z}}$j与${\tilde{Z}}$j+1(j=1,3,5)各包含一个差.

步骤3  结合步骤1,2以及式(32),分下面两种情形证明该定理:

(1) 集合G包含式(32)中的3个差,集合${\tilde{G}}$包含式(32)中的一个差;

(2) 集合G与${\tilde{G}}$各包含式(32)中的2个差,并且这两种情形均不可能成立.

证明  当集合G包含式(29)中的3个差,集合${\tilde{G}}$包含式(32)中的一个差时,结合步骤1及式(31),设

λ5-λ1Z1,λ4-λ1Z3,λ3-λ1Z5,λ2-λ1∈${\tilde{G}}$.
则当λ2-λ1∈${\tilde{Z}}$1时,
λ5-λ2=(λ5-λ1)-(λ2-λ1)∈Z1-${\tilde{Z}}$1.
由引理1(g)及式(29)即可推出矛盾.同理,当λ2-λ1∈${\tilde{Z}}$j(j=2,3,…,6),也可由引理1(g)及式(29)推出矛盾.其他情况类似,从而(1)不成立.

当集合G与${\tilde{G}}$各包含式(32)中的2个差时,设λ5-λ1Z1,λ4-λ1Z3.由引理1(g)可知,Z1与${\tilde{Z}}$1,${\tilde{Z}}$2,${\tilde{Z}}$5,${\tilde{Z}}$6中不能同时包含式(32)中的差,Z3与${\tilde{Z}}$1,${\tilde{Z}}$2,${\tilde{Z}}$3,${\tilde{Z}}$4中不能同时包含式(32)中的差.因此,当λ5-λ1Z1,λ4-λ1Z3时,${\tilde{G}}$=∅.同理可证其他情况,从而(2)也不成立.

综上证明可知,当pj∈2Z+1\{±1}(j=1,2,3)时,μM0,D0不是谱测度,且空间L2(μM0,D0)中至多有4个正交指数函数系.而且可以找到4个正交指数函数系,如对式(8)中的S0,指数函数系E(S0)就是空间L2(μM0,D0)正交系.从而可知数字“4”是最好的.

根据相似变换不改变谱性质以及定理2,即可得到定理1的结论.

例1  对如下形式的扩张矩阵和数字集

$M = \left[ {\matrix{ \matrix{ 11/2 \hfill \cr 3/2 \hfill \cr - 3/2 \hfill \cr} & \matrix{ - 1/2 \hfill \cr 15/2 \hfill \cr 1/2 \hfill \cr} & \matrix{ - 2 \hfill \cr 2 \hfill \cr 6 \hfill \cr} \cr } } \right],D = \left\{ {\left( {\matrix{ 0 \cr 0 \cr 0 \cr } } \right),\left( {\matrix{ 1 \cr 0 \cr 0 \cr } } \right),\left( {\matrix{ 0 \cr 1 \cr 0 \cr } } \right),\left( {\matrix{ 0 \cr 0 \cr 1 \cr } } \right)} \right\},$
则空间L2M,D)中存在无限正交系E(Λ)且Λ⊆Z3.

证明 因为

$M = \left[ {\matrix{ \matrix{ 11/2 \hfill \cr 3/2 \hfill \cr - 3/2 \hfill \cr} & \matrix{ - 1/2 \hfill \cr 15/2 \hfill \cr 1/2 \hfill \cr} & \matrix{ - 2 \hfill \cr 2 \hfill \cr 6 \hfill \cr} \cr } } \right] = \left[ {\matrix{ \matrix{ 7/2 + 4/2 \hfill \cr 7/2 - 4/2 \hfill \cr - 7/2 + 4/2 \hfill \cr} & \matrix{ 7/2 - 8/2 \hfill \cr 7/2 + 8/2 \hfill \cr - 7/2 + 8/2 \hfill \cr} & \matrix{ 4/2 - 8/2 \hfill \cr - 4/2 + 8/2 \hfill \cr 4/2 + 8/2 \hfill \cr} \cr } } \right],$
故可作相似变换,令
$P = \left[ {\matrix{ \matrix{ 1/2 \hfill \cr 1/2 \hfill \cr - 1/2 \hfill \cr} & \matrix{ 1/2 \hfill \cr - 1/2 \hfill \cr 1/2 \hfill \cr} & \matrix{ - 1/2 \hfill \cr 1/2 \hfill \cr 1/2 \hfill \cr} \cr } } \right],则{P^{ - 1}} = \left[ {\matrix{ \matrix{ 1 \hfill \cr 1 \hfill \cr 0 \hfill \cr} & \matrix{ 1 \hfill \cr 0 \hfill \cr 1 \hfill \cr} & \matrix{ 0 \hfill \cr 1 \hfill \cr 1 \hfill \cr} \cr } } \right].$
从而有
${M_0}: = {P^{ - 1}}MP = \left[ {\matrix{ \matrix{ 7 \hfill \cr 0 \hfill \cr 0 \hfill \cr} & \matrix{ 0 \hfill \cr 4 \hfill \cr 0 \hfill \cr} & \matrix{ 0 \hfill \cr 0 \hfill \cr 8 \hfill \cr} \cr } } \right]H{D_0} = {P^{ - 1}}D = \left\{ {\left( {\matrix{ 0 \cr 0 \cr 0 \cr } } \right),\left( {\matrix{ 1 \cr 0 \cr 0 \cr } } \right),\left( {\matrix{ 0 \cr 1 \cr 0 \cr } } \right),\left( {\matrix{ 0 \cr 0 \cr 1 \cr } } \right)} \right\},$
由定理2可知,空间L2(μ(M0,D0))中存在无限正交系E(Λ0)且Λ0Z3,从而空间L2M,D)中存在无限正交系E(Λ)且Λ⊆Z3.

参考文献
[1] FUGLEDEB.Commuting self-adjoint partial differential operators and a group theoretic problem[J].J Funct Anal,1974,16(1):101-121.
Click to display the text
[2] JORGENSEN P E T,PEDERSEN S.Dense analytic subspaces in fractal L2-spaces[J].J Anal Math,1998,75(1):185-228.
Click to display the text
[3] 张陇生.自仿测度的谱性质[J]. 纺织高校基础科学学报 ,2009,22(4) :445-448. ZHANGLongsheng.Spectralpropertiesofself-affinemeasure[J].Basic Sciences Journal of Textile Universities,2009,22(4) :445-448.
Cited By in Cnki (3)
[4] 高桂宝.R3中共线数字集自仿测度的谱性质[J].吉林大学学报:理学版,2014,52(2):2-6. GAO Guibao. Spectrality of self-affine measures with collinear digit set on R3[J].Journal of Jilin University: Science Edition,2014,52(2):2-6.
Cited By in Cnki (1)
[5] STRICHARTZ R.Remarks on "Dense analytic subspaces infractal L2-spaces"[J].J Anal Math,1998,75(1):229-231.
Click to display the text
[6] STRICHARTZ R.Mock Fourier series and transforms associated with certain Cantor measures[J].J Anal Math,2000,81(1):209-238.
Click to display the text
[7] LABA I,WANG Yang.On spectral Cantor measures[J].J Funct Anal,2002,193(2):409-420.
Click to display the text
[8] DUTKAY D E,JORGENSEN P E T.Duality questions for operators spectrum and measures[J].Acta Appl Math,2009,108(3):515-528.
Click to display the text
[9] 张陇生.一类三元素数字集的平面自仿测度的非谱性质[J].山东大学学报:理学版,2011,46(2):5-8. ZHANG Longsheng. Non-spectrality of a class of planar self-affine measures with three-element digit set[J].Journal of Shandong University:Natural Science,2011,46(2):5-8.
Cited By in Cnki (2)
[10] DUTKAY D E,JORGENSEN P E T.Fourier frequencies in affine iterated function systems[J].J Funct Anal,2007,247(1):110-137.
Click to display the text
[11] LI Jianlin.Non-spectral problem for a class of planar self-affine measures[J].J Funct Anal,2008,255(11):3125-3148.
Click to display the text
[12] LI Jianlin.Spectral self-affine measures in Rn[J].Pro Edinburgh Math Soc,2007,50 (1):197-215.
Click to display the text
[13] LI Jianlin,WEN Zhiying.Spectrality of planar self-affine measures with two-element digit set[J].Sci China Math,2012,55(3):593-605.
Click to display the text
[14] LI Jianlin.Spectrality of self-affine measures on the three-dimensional Sierpinski gasket[J].Pro Edinburgh Math Soc,2012,55(3):477-496.
Click to display the text
[15] JORGENSEN P E T,PEDERSEN S.Harmonic analysis of fractal measures[J].Constr Approx,1996,12(1):1-30.
Click to display the text
[16] DUTKAY D E,JORGENSEN P E T.Analysis of orthogonality and of orbits inaffine iterated function systems[J].Math Z,2007,256(4):801-823.
Click to display the text
[17] LI Jianlin.On the μM,D-orthogonal exponentials[J].Nonlinear Analysis,2010,73(4):940-951.
Click to display the text
西安工程大学; 中国纺织服装教育学会主办
0

文章信息

李敏
LI Min
空间中特定自仿测度的谱性质分析
Analysis of spectral for the certain spatial self-affine measure
纺织高校基础科学学报, 2016, 29(02): 152-160
Basic Sciences Journal of Textile Universities, 2016, 29(02): 152-160.

文章历史

收稿日期: 2015-03-15

相关文章

工作空间