罗双华, 张亚飞. 缺失响应数据下二阶段估计的渐近性质[J]. 纺织高校基础科学学报, 2016, 29(02): 197-203,209.
Asymptotic property of two stage estimator under missing response data
LUO Shuanghua , ZHANG Yafei    
School of Science, Xi'an Polytechnic University, Xi'an 710048, China
Abstract: Under missing response data, the semiparametric regression model Y=X'β+g(T)+ε is considered to establish the two stage estimators of $\hat{\beta }$n,ĝn(t) and ${\hat{\sigma }}$2(t) and σ2 of β, g(t) and σ2. Then the mean of Y is derived by the imputed every missing Yi. It is shown that these estimators have asymptotic normality and ĝn(t) has the better convergence rate.
Key words: semiparametric regression model     two stage estimator     missing response data     asymptotic normality     best convergence rate    
缺失响应数据下二阶段估计的渐近性质
罗双华, 张亚飞    
西安工程大学 理学院, 陕西 西安 710048
摘要: 在缺失响应数据下考虑半参数回归模型Y=X'β+g(T)+ε,建立该模型参数β,g(t)和σ2的二阶段估计$\hat{\beta }$n,ĝn(t)和${\hat{\sigma }}$2,并通过对每个缺失响应数据Yi进行插值,得到了响应数据的均值.研究表明,这些参数的估计具有渐近正态性,并且ĝn(t)具有较好的收敛速度.
关键词: 半参数回归模型     二阶段估计     缺失响应数据     渐近正态性     最佳收敛速度    
0 Introduction

In this paper, we consider the following semiparametric regression model

Yi=Xi'β+g(Ti)+εi (1)
where {(Xi, Yi, Ti), 1≤in} are independent identically distributed sample, Xi=(Xi1, …, Xip)', Ti∈[0, 1], 1≤in, β is p×1 vector, g(t) is a unknown and smooth function on the [0, 1]. The {εi, 1≤in} are independent identically distributed random variables with i=0, 12=σ02>0, where i and i2 denote the expectation value of εi and εi2, respectively.And it is independent on the {(Xi, Ti), 1≤in}. The model (1) belongs to a sort of the semiparametric regression model and has extensive application in many practical problems. Recently, the model(1) has been discussed by many authors with complete data[1, 2, 3, 4]. However, it is not surprising that little attention has been paid to model (1) with missing data. Limited studies in this direction have been discussed by reference [5], generalized the local linear estimation of [6], to the case with covariate missing at random.Reference [7] developed estimation theory for semiparametric regression analysis in the presence of missing response. Refercence[8] discussed the generalized partially linear models with missing covariates.Reference[9] discussed the partially linear models with missing responses at random. More references see [10, 11, 12, 13]. This paper focuses on establishing asymptotic normality and consistency of the two stage estimator in semiparametric regression model with missing response data.

In the semiparametric regression analysis setting up, the basic inference begins by considering the random sample

(Xi, Yi, Ti, δi), (2)
for i=1, 2, …, n. Here all the Xi' and Ti areobserved.If the response variable Yi with companion Xi is observed, its associated indicator δi is set to be 1;otherwise, Yi is missing and δi=0, for each i=1, 2, …, n.

By a purely semiparametric approach to discussing the missing data (2), the MAR assumption would require that there exists a chance mechanism denoted by p(Xi, Ti), such that

P(δ=1|Xi, Yi, Ti)=P(δ=1|Xi, Ti)=p(Xi, Ti) (3)
holds almost surely. In practice, (3) is a common assumption for statistical analysis with missing data and is reasonable in many practical applications, see reference[14].

1 The two stage estimator

In this section we define the estimators that we will analyze in this paper. We describe how to estimate the regression function.

Let α=Eg(Ti), ei=g(Ti)-α+εi, i=1, …, n, the model (1) turn into following

Yi=α+XI'β+ei. (4)
Where the e1, …, en are independent identically distributed random variables with Ee1=0 and 0<σ2=Ee12=Eε12+Var(g(Ti))=σ0212<∞. The model (4) can be changed into the following form=
Yn=(1n, Xn)α
β+en=1nα+Xnβ+en.
(5)
Where Xn=(X1, …, Xn)', Yn=(Y1, …, Yn)' and en=(e1, …, en)', 1n=(1, …, 1)'. Set Sn=Xn'QnXn, Pn=QnXnSn-1Xn'Qn' and dn=1n'(Qn-Pn)1n=$\sum\limits_{i=1}^{n}{{}}$δi-1n'Pn1n, where Qn=Diag(δ1, …, δn).

In order to obtain the solution of the following least squares problem (5), we have to find α and β to minimize

Wn=(Yn-Xnβ-1nα)'Qn(Yn-Xnβ-1nβ).
By optimization theory, we have that
$\left\{ \begin{align} & X_{n}^{'}{{Q}_{n}}{{X}_{n}}\beta +X_{n}^{'}{{Q}_{n}}{{1}_{n}}\alpha =X_{n}^{'}{{Q}_{n}}{{Y}_{n}}, \\ & 1_{n}^{'}{{Q}_{n}}{{1}_{n}}\alpha +1_{n}^{'}{{Q}_{n}}{{X}_{n}}\beta =1_{n}^{'}{{Q}_{n}}{{Y}_{n}}, \\ \end{align} \right.$
and thus
$\left\{ \begin{align} & \beta _{n}^{*}={{\left( X_{n}^{'}{{Q}_{n}}{{X}_{n}} \right)}^{-1}}X_{n}^{'}{{Q}_{n}}\left( {{Y}_{n}}-{{1}_{n}}\alpha _{n}^{*} \right), \\ & \alpha _{n}^{*}={{\left( 1_{n}^{'}{{Q}_{n}}{{1}_{n}} \right)}^{-1}}1_{n}^{'}{{Q}_{n}}\left( {{Y}_{n}}{{X}_{n}}\beta _{n}^{*} \right). \\ \end{align} \right.$ (7)
Joining the first equality into the second equality of (7), we obtain αn*=dn-1[1n'(Qn-Pn)Yn], and consequently
$\left\{ \begin{align} & \alpha _{n}^{*}=d_{n}^{-1}\left[ 1_{n}^{'}\left( {{Q}_{n}}-{{P}_{n}} \right){{Y}_{n}} \right], \\ & \beta _{n}^{*}=S_{n}^{-1}X_{n}^{'}{{Q}_{n}}{{Y}_{n}}-S_{n}^{-1}X_{n}^{'}{{Q}_{n}}{{1}_{n}}\alpha _{n}^{*}. \\ \end{align} \right.$
As a result, the first stage estimator βn* of β is obtained.Substituting βn* for β in the model(1), we have
Xi=Xi'βn*+g(Ti)+εi. (8)
Now, we defined the nonparametric estimator of g(t) that
gn*(t)=$\sum\limits_{j=1}^{n}{{}}$ Wnj(t)(Yj-Xj'βn*)δj, (9)
where Wnj=$\left[ K\frac{{{T}_{j}}-t}{{{h}_{n}}} \right]/\left[ \sum\limits_{r=1}^{n}{{}}K\left( \frac{{{T}_{r}}-t}{{{h}_{n}}} \right){{\delta }_{r}} \right]$, K(·) is a kernel function and hn>0 is the bandwidth.Substituting gn* in the model (1), we have
Yi=Xi'β+gn*(Ti)+εi. (10)
Using the generalized least squares for the model (10), we can find β to minimize
$\sum\limits_{i=1}^{n}{{}}$[Yi-Xi'β-gn*(Ti)]2, (11)
and obtain estimator of β that
${\hat{\beta }}$n=Sn-1Xn'Qn(Yn-gn*(T)),
where gn*(T)=[gn*(T1), gn*(T2), …, gn*(Tn)]T. The estimator of g(T) is as follows:
${\hat{g}}$n(t)=$\sum\limits_{j=1}^{n}{{}}$Wnj(t)(Yj-Xj'${\hat{\beta }}$n)δj.
So we now can obtain the estimation of θ=E(Y). The regression imputation estimator of θ can be denoted by
${\hat{\theta }}$I=$\frac{1}{n}$$\sum\limits_{i=1}^{n}{{}}${δiYi+(1-δi)(XiT${\hat{\beta }}$n+${\hat{g}}$n(Ti))}. (12)
Thus, we have the propensity score weighted estimator
${\hat{\theta }}$w=$\frac{1}{n}$$\sum\limits_{i=1}^{n}{{}}$$\left\{ \frac{{{\delta }_{i}}{{Y}_{i}}}{\hat{P}\left( {{X}_{i}}, {{T}_{i}} \right)}+\left( 1-\frac{{{\delta }_{i}}}{\hat{P}\left( {{X}_{i}}, {{T}_{i}} \right)} \right)X_{i}^{T}{{{\hat{\beta }}}_{n}}+{{{\hat{g}}}_{n}}\left( {{T}_{i}} \right) \right\}, $ (13)
where ${\hat{P}}$(x, t) is a high-dimensional kernel estimator of the propensity score defined by
$\hat{P}\left( x, t \right)=\left[ \sum\limits_{j=1}^{n}{{}}{{\delta }_{j}}W\left( \frac{x-{{X}_{j}}}{{{h}_{n}}}, \frac{t-{{T}_{j}}}{{{h}_{n}}} \right) \right]/\sum\limits_{j=1}^{n}{{}}W\left( \frac{x-{{X}_{j}}}{{{h}_{n}}}, \frac{t-{{T}_{j}}}{{{h}_{n}}} \right), $ (14)
with W(·, ·) is the weighting function and hn is the bandwidth sequence.

2 The asymptotic properties and consistencies

We explore the asymptotic distribution and consistency of the all estimators. The following notation and assumptions are needed.

(ⅰ) The T1, T2Tn are independent identically distributed random variables and the {Ti} is independent of the {ei}.

(ⅱ) The rank(Xn)=p<n.

(ⅲ) $\underset{n>p}{\mathop{\sup }}\,\frac{1_{n}^{'}{{P}_{n}}{{1}_{n}}}{n}$<1.

(ⅳ) E[g(T1)]2<∞.

(ⅴ) Existence 0<C1C2<∞ and have C1I(‖u‖<2)≤K(u)C2 I(‖u‖<2), u∈[0, 1].

(ⅵ) The probability density function of Ti is r(t) and

0<$\mathop {\inf }\limits_{0 \le t \le 1} $r(t)≤$\mathop {\sup }\limits_{0 \le t \le 1} $r(t)<∞. (1)
In what follows the main results will be established for the asymptotic distribution and consistency of the semiparametric regression model.

Theorem 1  Under conditions (ⅰ)~(ⅴ), we have that

(1) αn*α, a.s.

(2) βn*β, a.s. if and only if sn-1→0.

(3) βn*$\xrightarrow{P}$ββn*$\xrightarrow{{{L}_{r}}}$β(0<r≤2)⇔βn*β, a.s.

Theorem 2  Under conditions (ⅰ)~(ⅴ), if $\underset{n\to \infty }{\mathop{\lim }}\, \underset{1\le k\le n}{\mathop{\max }}\, $Xk'Sn-1Xk=0 and $\underset{n\to \infty }{\mathop{\lim }}\, $nSn-1=p(x, t)Σ is symmetric and positive definite, where p(x, t)>0 for any x>0 and t>0, and Σ is a symmetric and positive definite matrix,

(1) then $\sqrt{n}$(βn*-β)$\xrightarrow{L}$N(0, σ2p(x, t)Σ),

(2) further, if the condition (ⅲ) is replaced by $\underset{n>p}{\mathop{\sup }}\, $1n'Pn 1n=O(1), and gR is bounded when Sn-1→0 and nSn-1p(x, t)Σ, then

(ⅰ)${\hat{\beta }}$ nβ, a.s.

(ⅱ) $\sqrt{n}$(n-β)$\xrightarrow{L}$N(0, σ02p(x, t)Σ).

Theorem 3  Under conditions (ⅰ)~(ⅵ), suppose that T1, T2Tn in the conditions (ⅰ) are independent identically distributed random variables and the probability density function r(t) is unknown substitute the condition of (ⅰ). In addition, inf(n1-αhn)>0, α∈(1/2, 1) and $\underset{n\to \infty }{\mathop{\lim }}\, \underset{1\le k\le n}{\mathop{\max }}\, $Xk'Sn-1Xk=0 when hn→0 and [$\sqrt{n}$hn]/[logn]→∞,

(1) then gn*(t)-g(t)→0, a.s. ∀t∈Cr∧{t, r(t)>0},

(2) further if gR is bounded when Sn-1→0, then ${\hat{g}}$n(t)-g(t)→0, a.s.

Theorem 4  Under conditions (i)~(vi), we have

$\sqrt{n}$(${\hat{\theta }}$-θ)$\xrightarrow{L}$N(0, σ02p(x, t)Σ). (15)
3 Sketches of the proofs

In this section, we will give the proof of Theorem 1~3.The following lemmas are needed for our technical proofs.

Lemma 1  If hn→0, nhnd/(n1-1/rlogn)→∞, the kernel estimator of nonparametric regression under response missing is

$\hat{g}\left( x \right)=\sum\limits_{i=1}^{n}{{}}K\frac{{{X}_{i}}-x}{{{h}_{n}}}{{Y}_{i}}{{\delta }_{i}}/\sum\limits_{j=1}^{n}{{}}K\left( \frac{{{X}_{j}}-x}{{{h}_{n}}} \right){{\delta }_{j}}=\sum\limits_{i=1}^{n}{{}}W_{ni}^{'}\left( x \right){{Y}_{i}}, $
we have $\underset{n\to \infty }{\mathop{\lim }}\, \hat{g}$(x)=g(x), a.s.

Proof  Similar to the theorem in reference[15].

Proof the Theorem 1  Similar to the Lemma 2.1 in reference [16].

Proof the Theorem 2

(1) $\sqrt{n}$(βn*-β)=$\sqrt{n}$[(Sn-1Xn'QnYn-Sn-1Xn'Qn1ndn-11n'(Qn-Pn)Yn)-β]=
    $\sqrt{n}$[(Sn-1Xn'Qn(1nα+Xnβ+en)-
    Sn-1Xn'Qn1ndn-11n'(Qn-Pn)(1nα+Xnβ+en)-β]=
    $\sqrt{n}$[Sn-1Xn'Qnen-Sn-1Xn'Qn1ndn-11n'(Qn-Pn)Xnβ-
    Sn-1Xn'Qn1ndn-11n'(Qn-Pn)en]=
    $\sqrt{n}$[Sn-1Xn'Qn en-Sn-1Xn'Qn1ndn-11n'(Qn-Pn)en]=
    $\sqrt{n}$Sn-1Xn'Qn en-$\sqrt{n}$Sn-1Xn'Qn1n1n'(Qn-Pn)en dn-1$\triangleq $J1-J2.

It is easy to prove J2$\xrightarrow{P}$0 and J1=$\sqrt{n}$Sn-1Xn'Qnen. Thus, EJ1=0, VarJ1=Var($\sqrt{n}$Sn-1Xn'Qnεn)=σ2p(x, t)Σ.By Linderberg Theorem, we have

J1$\xrightarrow{L}$N(0, σ2p(x, t)Σ).

(2) Firstly, we prove the conclusion (ⅰ) of (2).

${\hat{\beta }}$n-β=Sn-1Xn'Qn(Yn-gn*(T))-β=
   Sn-1Xn'Qn(Xnβ+g(T)+εn-gn*(T))-β=
   Sn-1Xn'Qnεn-Sn-1Xn'Qn(gn*(T)-g(T)).
By Lemma 1 in reference[17], in order to obtain the proof of (i), we only prove
Sn-1Xn'Qn(gn*(T)-g(T))→0, a.s.
By $\underset{n\to \infty }{\mathop{\lim }}\, $nSn-1=p(x, t)Σ>0, it is known that there is c3>c4>0 and c3≥|Sn|/nc4 such that
Sn-1Xn'Qn‖≤‖Sn-1‖‖Xn'‖≤‖Sn-1‖|$\sum\limits_{i, j}^{{}}{{}}$|Xij||≤${n \over {X_{nn}^2}}\sqrt {\sum\limits_{i,j}^n {} X_{ij}^2/n} \le \sqrt {{n \over {\left| {{S_n}} \right|}}} < c.$
According to the first conclusion of Theorem 3, gn*(T)-g(T)→0, a.s.Thus,

Sn-1Xn'Qn(gn*(T)-g(T))→0, a.s.

Now we prove conclusion (ⅱ) of (2).

$\sqrt{n}$(${\hat{\beta }}$n-β)=$\sqrt{n}$[Sn-1Xn'Qn(Yn-gn*(T))-β]=
  $\sqrt{n}$Sn-1Xn'Qnεn-$\sqrt{n}$Sn-1Xn'Qn(gn*(T)-g(T)).
Because |Xn'Qn/n|≤$\sqrt{\left\| {{S}_{n}} \right\|/n}$≤c, nSn-1p(x, t)Σ is symmetric and positive definite, and gn*(T)→g(T), a.s.
$\sqrt{n}$Sn-1Xn'Qn(gn*(T)-g(T))=nSn-1Xn'Qn$\frac{1}{\sqrt{n}}$(gn*(T)-g(T))→0, a.s.
It is known that $\sqrt{n}$Sn-1Xn'Qnen is i.i.d. random variable,
E($\sqrt{n}$Sn-1Xn'Qnen)=0.
and
Var$\sqrt{n}$Sn-1Xn'Qnεn=p(x, t)σ02Σ.
It follows from Linderberg theorem that
$\sqrt{n}$Sn-1Xn'Qnεn$\xrightarrow{L}$N(0, p(x, t)σ02Σ),
namely, $\sqrt{n}$(${\hat{\beta }}$n-β)$\xrightarrow{L}$N(0, p(x, t)σ02Σ).This completes the proof of Theorem 2.

Theorem 3

(1) Let Wn(t)=(Wn1(t), …, Wnn(t))'=, where tiCf∧{Ti, f(ti)>0}.Since

gn*(t)=$\sum\limits_{j=1}^{n}{{}}$Wnj(t)(Yj-Xj'βn*)δj=
  $\sum\limits_{j=1}^{n}{{}}$Wnj(t)(Yj-Xj'β+Xj'β-Xj'βn*)δj=
Wn'(t)Qn(Yn-Xnβ)-Wn'(t)QnXn(βn*-β)$\triangleq $
J1-J2,
J1=Wn'(t)Qn(Yn-Xnβ)=$\sum\limits_{j=1}^{n}{{}}$Wnj(t)(Yj-Xj'β)δj=
  $\sum\limits_{j=1}^{n}{{}}$Wnj'(t)(g(tj)+εj)=$\sum\limits_{j=1}^{n}{{}}$Wnj'(t)kj,
where {kj} is i.i.d. and 0<Ek12<∞, E(k1|t1=t)=g(t). By the Lemma 1, J1→g(t), a.s.Thus, we only prove J2→0, a.s.
J2=Wn'(t)QnXn(βn*-β)=
Wn'(t)QnXn[(Sn-1Xn'QnYn-Sn-1Xn'Qn1nαn*)-β]=
Wn'(t)Pnen-Wn'(t)Pn1n(αn*-α).
Let
bnk=$\sum\limits_{j=1}^{n}{{}}$Wnj(t)ajk(n)=$\sum\limits_{j=1}^{n}{{}}$K($\frac{{{t}_{j}}-t}{{{h}_{n}}}$)ajk(n)/$\sum\limits_{i=1}^{n}{{}}$K($\frac{{{t}_{j}}-t}{{{h}_{n}}}$)δi,
where Pn=(aij(n)).Now we prove Wn'(t)Pnen→0, a.s.It is true that
$W_{n}^{'}\left( t \right){{P}_{n}}{{e}_{n}}=\sum\limits_{i=1}^{n}{{}}{{b}_{ni}}{{\varepsilon }_{i}}={{\left( {{f}_{n}}\left( t \right) \right)}^{-1}}\left\{ \sum\limits_{k=1}^{n}{{}}\left[ \sum\limits_{j=1}^{n}{{}}K\left( \frac{{{t}_{j}}-t}{{{h}_{n}}} \right)a_{jk}^{\left( n \right)} \right]{{\varepsilon }_{k}} \right\}\triangleq ={{\left( {{f}_{n}}\left( t \right) \right)}^{-1}}{{{\bar{u}}}_{n}}\left( t \right).$
It follows from Lemma 3 in reference[9] that un(t)→0, a.s. Following Lemma 4 in reference [17], it is easy to know that fn(t)→p(x, t)f(t), a.s. Thus,
Wn'(t)Pnen→0, a.s. (16)
Within Wn'(t)Pn1n(αn*-α), let uik(n)=$\frac{{{A}_{ni}}\left( {{\delta }_{k}}-{{A}_{nk}} \right)}{{{d}_{n}}}$, where Ani=$\sum\limits_{j=1}^{n}{{}}$aij(n), Pn=(aij(n)). Then
Wn'(t)Pn1n(αn*-α)=Wn'(t)Pn1ndn-1[1n'(Qn-Pn)en]=
   (fn(t))-1$\sum\limits_{k=1}^{n}{{}}$$\sum\limits_{j=1}^{n}{{}}$K$\left( \frac{{{t}_{j}}-t}{{{h}_{n}}} \right)$ujk(n)εknhn$\triangleq $
   (fn(t))-1Vn(t).
By the condition (ⅱ), 0<dn=1n'(Qn-Pn)1n=$\sum\limits_{k=1}^{n}{{}}$(δk-Ank)=$\sum\limits_{k=1}^{n}{{}}$(δk-Ank)2.Since
$\sum\limits_{k=1}^{n}{{}}$Ank2=1n'Pn1n=$\sum\limits_{k=1}^{n}{{}}$Ank,
$\sum\limits_{j, k=1}^{n}{{}}$(ujk(n))2=dn-2$\sum\limits_{j=1}^{n}{{}}$$\sum\limits_{k=1}^{n}{{}}$Anj2(δk-Ank)2=
dn-1$\sum\limits_{j=1}^{n}{{}}$Anj2=dn-1(1n'Pn1n)=1n'Pn1n$\sum\limits_{j=1}^{n}{{}}$δj-1n'Pn1n=
$\frac{1}{\sum\limits_{j=1}^{n}{{}}{{\delta }_{j}}/1_{n}^{'}{{P}_{n}}{{1}_{n}}-1}$≤c,
when n>p.The Cauchy-Schwarz inequality yields
$\sum\limits_{k=1}^{n}{{}}$$\sum\limits_{r=1}^{n}{{}}$ukk(n)urr(n)=dn-2$\sum\limits_{k=1}^{n}{{}}$$\sum\limits_{r=1}^{n}{{}}$Ank(1-Ank)Anr(1-Anr)≤<
   dn-2[$\sum\limits_{k=1}^{n}{{}}$$\sum\limits_{r=1}^{n}{{}}$Ank2(1-Anr)2]1/2[$\sum\limits_{k=1}^{n}{{}}$$\sum\limits_{r=1}^{n}{{}}$Anr2(1-Ank)2]1/2c,
when np.Therefore,
$\sum\limits_{k=1}^{n}{{}}$($\sum\limits_{j=1}^{n}{{}}$ujk(n))2n$\sum\limits_{k=1}^{n}{{}}$$\sum\limits_{j=1}^{n}{{}}$ (ujk(n))2cn.
Since the uik(n) in the un(t) is the same function as the ajk(n) in the ${{{\bar{u}}}_{n}}$(t), νn(t)→0, a.s.can be obtained. According to the proof above and Lemma 4 in reference [17], we have
Wn'(t)Pn1n(αn*-α)→0, a.s. (17)
(16) and (17) show J2→0, a.s. This completes the proof (1) of Theorem 3.

(2) It is not difficult to obtain

${\hat{g}}$n(t)=$\sum\limits_{j=1}^{n}{{}}$Wnj(t)(Yj-Xj')δj=
Wn'(t)Qn(Yn-Xnβ)-Wn'QnXn(${\hat{\beta }}$n-β),
${\hat{\beta }}$n-β=Sn-1Xn'Qn(Yn-gn*(T))-β=
Sn-1Xn'Qnen-Sn-1Xn'Qn(gn*(T)-g(T)),
and
${\hat{g}}$n(t)=Wn'Qn(Yn-Xnβ)-Wn'(t)QnXnSn'Xn'Qnεn+
Wn'(t)QnXnSn-1Xn'Qn(gn*(T)-g(T))=
Wn'(t)Qn(Yn-Xnβ)-Wn'(t)Pnen+
Wn'(t)Pn(gn*(T)-g(T))=
I1-I2+I3.
(18)
It has been proved that
I1=Wn'(t)Qn(Yn-Xnβ)→ g(t), a.s.
and
Wn'(t)Pnen=$\sum\limits_{i=1}^{n}{{}}$bnjεi=
   (fn(t))-1$\sum\limits_{k=1}^{n}{{}}$$\frac{1}{n{{h}_{n}}}$$\sum\limits_{j=1}^{n}{{}}$K$\left( \frac{{{t}_{j}}-t}{{{h}_{n}}} \right)$ajk(n)εk$\triangleq $
   (fn(t))-1un'(t).
(19)
Using the same method of the proof for (1) of Theorem 3, it follows from Lemma 3 in reference [17] that
Wn'(t)Pnen→0, a.s. (20)
By the conditions (Ⅴ) we know that
$\begin{align} & W_{n}^{'}\left( t \right){{P}_{n}}=\sum\limits_{j, k}^{{}}{{}}K\left( \frac{{{t}_{j}}-t}{{{h}_{n}}} \right)a_{jk}^{\left( n \right)}/\sum\limits_{i=1}^{n}{{}}\left( \frac{{{t}_{i}}-t}{{{h}_{n}}} \right){{\delta }_{i}}\le \\ & c\sum\limits_{j, k}^{{}}{{}}\left| a_{jk}^{\left( n \right)} \right|/\sum\limits_{i=1}^{n}{{}}K\left( \frac{{{t}_{i}}-t}{{{h}_{n}}} \right){{\delta }_{i}}\le \\ & c\sum\limits_{j, k}^{{}}{{}}\left| a_{jk}^{\left( n \right)} \right|n\le c\sum\limits_{k=1}^{{}}{{}}\frac{\left| {{A}_{nk}} \right|}{n}, \\ \end{align}$
and
1n'Pn1n=$\sum\limits_{j, k}^{{}}{{}}$ajk(n)=$\sum\limits_{k=1}^{n}{{}}$Ank=$\sum\limits_{k=1}^{n}{{}}$Ank2.
According to the conditions (ⅲ), it holds that $\sum\limits_{k=1}^{n}{{}}$($\frac{{{A}_{nk}}}{n}$)2c. Thus, when n>p, $\sum\limits_{k=1}^{n}{{}}$|$\frac{{{A}_{nk}}}{n}$|≤c.Namely, Wn'(t)Pnc. From conclusion (1) of Theorem 3, we have gn*(T)-g(T)→0, a.s. Thus,
Wn'(t)Pn(gn*(T)-g(T))→0, a.s. (21)
(18), (20) and (21) imply ${\hat{g}}$n(t)→ g(t), a.s. This completes the proof of Theorem 3.

参考文献
[1] ENGLE R F, GRANGER C W J, RICE J, et al.Semiparametric estimates of the relation between weather and electricity scales[J].Journal of the American Statistical Association, 1986, 81(394):310-320.
Click to display the text
[2] SPECHMAN P.Kernel smoothing in partial linear models[J].J Roy Statist Soc Ser B, 1988, 50(3):413-436.
[3] HECHMAN N.Spline smoothing in a partly linear model[J].J Roy Statist Soc Ser B, 1986, 48(2):244-248.
Click to display the text
[4] HAMILTON S A, TRUONG Y K.Local linear estimation in partly linear models[J].J Multivariate Anal, 1997, 60(1):1-19.
Click to display the text
[5] WAMG Qihua, SUN Zhihua.Estimation in partially linear models with missing responses at random[J].J Multivariate Anal, 2007, 98(7):1470-1493.
Click to display the text
[6] FAN J, HECKMAN N E, WANG M P.Local polynomial kernel regression for generalized linear models and quasilikelihood functions[J].Journal of the American Statistical Association, 1995, 90(47):663-685.
Click to display the text
[7] WANG Qihua, LINTON Oliver, HARDLE Wolfgang.Semiparametric regression analysis with missing response at random[J].Journal of the American Statistical Association, 2004, 99(466):334-345.
Click to display the text
[8] LIANG H.Generalized partially linear models with missing covariates[J].J Multivariate Anal, 2008, 99(5):880-895.
Click to display the text
[9] CARROLL R J, GUTIERREZ R G, WANG C Y, et al.Local linear regression for generalized linear models with missing data[J].The Annals of Statistics, 1998, 26(3):1028-1050.
Click to display the text
[10] CHENG P E.Nonparametric estimation of mean functionals with data missing at random[J].Journal of the American Statistical Association, 1994, 89(425):81-87.
Click to display the text
[11] WANG Q, RAO N K.Empirical likelihood-based inference under imputation for missing response data[J].Annals of Statistics, 2002, 30(3):896-924.
Click to display the text
[12] XUE L. Empirical likelihood confidence intervals for response mean with data missing at random[J].Scandinavian Journal of Statistics, 2009, 36(4):671-685.
Click to display the text
[13] XUE L.Empirical likelihood for linear models with missing responses[J].Journal of Multivariate Analysis, 2009, 100(7):1353-1366.
Click to display the text
[14] LITTLE R J A, RUBLIN D B.Statistical analysis with missing data[M].New York:John Wiley, 1987.
[15] FANG Zhaoben, ZHAO Lincheng.Strong consistency of the kernel estimates of nonparametric regression functions[J].Acta Mathematical Applicate Sinica, 1985(3):268-276.
Click to display the text
[16] CAI Gengxiang. Two stage estimator in semiparametric model[J].Acta Mathematical Applicate Sinica, 1995, 18:353-363.
Click to display the text
[17] LUO Shuanghua, XUAN Haiyan, WANG Yaqing.Asymptotic to semiparametric EV model under missing response data(in Chinese)[J].Journal of Henan Normal University:Natural Science, 2007, 35(1):12-15.
Click to display the text
西安工程大学; 中国纺织服装教育学会主办
0

文章信息

LUO Shuanghua, ZHANG Yafei
罗双华, 张亚飞
Asymptotic property of two stage estimator under missing response data
缺失响应数据下二阶段估计的渐近性质
Basic Sciences Journal of Textile Universities, 2016, 29(02): 197-203,209.
纺织高校基础科学学报, 2016, 29(02): 197-203,209

文章历史

Received date: 2015-10-30

相关文章

工作空间