一类Kirchhoff方程最小能量变号解的存在性
郭红    
山西大学 数学科学学院, 山西 太原 030006
摘要: 研究一类Kirchhoff方程最小能量变号解的存在性,其中非线性项满足指数增长.首先用Brouwer不动点定理证明M是非空的,其次寻找能量泛函在M中的极小值点,最后应用形变引理证明极小值点就是方程的最小能量变号解.方程中由于非局部项的出现导致通常的变分方法不再适用,因此将方程对应的能量泛函限制在M上,最终得到了方程变号解的存在性结果.
关键词: Kirchhoff方程     Brouwer不动点定理     形变引理     变号解     最小能量    
Existence of sign-changing solution with least energy for a class of Kirchhoff equations
GUO Hong     
School of Mathematic and Science, Shanxi University, Taiyuan 030006, China
Abstract: The existence of sign-changing solution with least energy for a Kirchhoff equation is studied, where the nonlinearity satisfies an exponential growth.Firstly, Brouwer fixed point theorem is used to prove M is nonempty. Secondly, the minimizer of the energy functional on M is found. Then the minimizer is a sign-changing solution with least energy of the Kirchhoff equation is proved by quantitative deformation lemma. Because the appearance of nonlocal term,the usual variational approach is not applicable,so the energy function is restricted on M, a sign-changing solution with least energy for a Kirchhoff equation is obtained.
Key words: Kirchhoff equation     Brouwer fixed point     quantitative lemma     sign-changing solution     least energy    
0 引 言

本文考虑Kirchhoff方程

\[\left\{ {\begin{array}{*{20}{l}} { - (a + b\int {_\Omega |\nabla u{|^2}\Delta u} = f(u),}&{x \in \Omega ,}\\ {u(x) = 0,}&{x \in \partial \Omega } \end{array}} \right.\] (1)

变号解的存在性,其中Ω是R2中有界光滑区域,a,b>0是常数. 非线性项f满足下面条件:

(f1) 对每个β>0,存在一个正数Cβ,使得|f(t)|,|f′(t)|≤Cβexp(β t2),t∈R;

(f2)$\mathop {\lim }\limits_{t \to 0} \frac{{f(t)}}{t} = 0$;

(f3)$\frac{{f(t)}}{{|t{|^3}}}$在区间(0,+∞)和 (-∞,0)上递增;

(f4)$\mathop {\lim }\limits_{t \to \infty } \frac{{F(t)}}{{{t^4}}} = + \infty ,F(t) = \int_\Omega {tf(s){\rm{ds}}} \cdot $

近年来,Kirchhoff方程

\[\left\{ {\begin{array}{*{20}{l}} { - (a + b\int {_\Omega |\nabla u{|^2}\Delta u} + V(x)u = f(x,u),}&{x \in \Omega ,}\\ {u(x) = 0,}&{x \in \partial \Omega ,} \end{array}} \right.\] (2)

已经被国内外许多作者进行了深入研究,并且得到许多重要结果[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],其中Ω是RN中的区域,V(·):Ω→R,fC(Ω×R,R),a,b>0是常数. 许多作者研究了Kirchhoff方程的基态解、正解、多重解等问题. 文献[5]用Nehair流形及紧性原理证明了问题(2)基态解的存在性. 其他有关Kirchhoff方程的研究可参看文献[12, 13, 14, 15, 16].然而,研究Kirchhoff方程变号解的结果还不多,文献[17]研究了三维情形下Kirchhoff方程变号解的存在性,他们的非线性项都是次临界增长,也就是|f(x,t)|≤ C(1+|t|p),p∈(1,5).受此启发,本文研究带有指数增长的Kirchhoff方程变号解的存在性.

X=H01(Ω) 是通常意义下的Sobolev空间,其范数和内积分别为

\[(u,\upsilon ) = \int {_\Omega \nabla u \cdot \nabla \upsilon ,||u|| = } {(u,u)^{1/2}}.\]

空间Lp(Ω)是通常的Lebesgue空间,其范数记为|·|p,1≤p<∞.CCk代表不同的正常数.u+(x)=max{0,u(x)},u-(x)=min>{0,u(x)}.R+:=[0,+∞).

问题(1)对应的能量泛函为

\[I(u) = \frac{a}{2}||u|{|^2} + \frac{b}{4}||u|{|^4} - \int {_\Omega F(u),u \in X.} \]

显然IC1(X,R),且∀u,v∈X,

\[\left\langle {{I^\prime }(u),} \right.\left. \upsilon \right\rangle = a\int {_\Omega \nabla u \cdot \nabla \upsilon + } b\int {_\Omega |\nabla u{|^2}} \int {\nabla u \cdot \nabla \upsilon - \int {_\Omega f(u)\upsilon .} } \]

定义M={uX:u±≠0,〈I′(u),u+〉=〈I′(u),u-〉=0}. m=min{I(u):uM}.

定理1 假设 (f1)~(f4)成立,那么方程(1)有一个最小能量变号解.

1 预备知识

引理1 假设f满足(f1)~(f4),则对每个u≠0,uX,有

\[\begin{array}{l} \left( {\rm{i}} \right)\mathop {\lim }\limits_{t \to 0} \int_\Omega {\frac{{f(tu)u}}{t}} = 0.\\ \left( {{\rm{ii}}} \right)\mathop {\lim }\limits_{{\rm{|}}t{\rm{|}} \to \infty } \int_\Omega {\frac{{f(tu)u}}{{{t^3}}}} = + \infty .\\ \left( {{\rm{iii}}} \right)\mathop {\lim }\limits_{{\rm{|}}t{\rm{|}} \to \infty } \int_\Omega {\frac{{F(tu)}}{{{t^4}}}} = + \infty . \end{array}\]

证明 (ⅰ) 由(f1),(f2)知,∀β,ε>0,固定的p≥1,都存在Cβ,ε,p,使得

\[|f(t)| \le \varepsilon |t| + {C_{\beta ,\varepsilon ,p}}|t{|^{p - 1}}\exp (\beta {t^2}),t \in {\rm{R}},\] (3)
\[|F(t)| \le \frac{\varepsilon }{2}|t{|^2} + {C_{\beta ,\varepsilon ,p}}|t{|^p}\exp (\beta {t^2}),t \in {\rm{R}}{\rm{.}}\] (4)

由文献[18],存在常数C只与Ω有关,使得当uX\{0},αu2≤4π时,

\[\int_\Omega {\exp (a|u(x){|^2}{\rm{)d}}x = } \int_\Omega {\exp (a||u|{|^2}{\rm{)}}} \left[ {u(x)/||u|{|^2}} \right]{\rm{d}}x \le C.\] (5)

βu2≤2π,p>2.由式(3)及(5)知,

\[\int_\Omega {f(u)u| \le } \varepsilon \int_\Omega {{u^2}} + {C_{\beta ,\varepsilon ,p}}\int_\Omega {|u{|^p}} \exp (\beta {u^2}) \le C\varepsilon ||u|{|^2} + C{C_{\beta ,\varepsilon ,p}}|u{|^p}.\] (6)

由式(6)知

\[\begin{array}{l} |\int_\Omega {f(tu)tu| \le } C\varepsilon {t^2}||u|{|^2} + C{C_{\beta ,\varepsilon ,p}}{t^p}||u|{|^p}.\\ |\int_\Omega {\frac{{f(tu)u}}{t}| \le } C\varepsilon ||u|{|^2} + C{C_{\beta ,\varepsilon ,p}}{t^{p - 2}}||u|{|^p}. \end{array}\]

故由ε的任意性及p>2可得

\[\mathop {\lim }\limits_{t \to 0} \int_\Omega {\frac{{f(tu)u}}{t}} = 0.\]

(ⅱ) 由(f2)~(f4)易知,∀M>0,∃C>0,使得

f(t)tMt4-Ct2,t∈R.

故可得

f(tu)tuMt4u4-Ct2u2,t∈R.

上式同除t4并积分后取极限得

\[\mathop {\lim }\limits_{{\rm{|}}t{\rm{|}} \to \infty } \int_\Omega {\frac{{f(tu)u}}{{{t^3}}}} \ge M|u|_4^4.\]

由M的任意性可得

\[\mathop {\lim }\limits_{{\rm{|}}t{\rm{|}} \to \infty } \int_\Omega {\frac{{f(tu)u}}{{{t^3}}}} = + \infty .\]

(ⅲ)与(ⅱ)的证明类似.

引理2[19] 假设f满足条件(f1)~(f4),序列 {un}⊂X,使得${u_n} \to u$,则

\[\int_\Omega {f({u_n}){u_n} \to } \int_\Omega {f(u)u,} \int_\Omega F ({u_n}) \to \int_\Omega F (u).\]

类似于文献[17]有下面几个引理,但值得注意的是引理3的证明不同于文献[16],本文用Brouwer不动点定理证明M的非空性.

引理3 假设(f1)~(f4)成立,则∀uX,u±≠0,存在唯一正数对(su,tu),使得suu++tuu-M.

证明 对给定的uX,u±≠0,定义泛函Φu(s,t)=I(su++tu-),(s,t)∈R+×R+. 直接计算可得

\[\nabla {\Phi _u}(s,t) = \left( {\frac{{\partial {\Phi _u}}}{{\partial s}}(s,t)\frac{{\partial {\Phi _u}}}{{\partial t}}(s,t)} \right) = \left( {\left\langle {{I^\prime }(s{u^ + } + t{u^ - }),\left. {{u^ + }} \right\rangle ,\left\langle {{I^\prime }(s{u^ + } + t{u^ - })\left. {{u^ - }} \right\rangle } \right.} \right.} \right).\]

su++tu-M当且仅当(s,t)是Φu的一个临界点.下证Φu存在临界点. 首先证明对任意给定的t0∈R+,都存在唯一的s0,使得$\frac{\partial }{{\partial s}}{\Phi _u}({s_0},{t_0})$.

事实上,由Φu的定义知

\[\frac{\partial }{{\partial s}}{\Phi _u}(s,{t_0}) = s\left( {a||{u^ + }|{|^2} + b{s^2}||{u^ + }|{|^4} + bt_0^2||{u^ + }|{|^2}||{u^ - }|{|^2} - \int {_\Omega \frac{{f(s{u^ + }){u^ + }}}{s}} } \right),\] (7)
\[\frac{\partial }{{\partial s}}{\Phi _u}(s,{t_0}) = {s^3}\left( {\frac{a}{{{s^2}}}||{u^ + }|{|^2} + b||{u^ + }|{|^4} + \frac{{bt_0^2}}{{{s^2}}}||{u^ + }|{|^2}||{u^ - }|{|^2} - \int {_\Omega \frac{{f(s{u^ + }){u^ + }}}{{{s^3}}}} } \right).\] (8)

由式(7)及引理1(i)知,当s>0充分小时,$\frac{\partial }{{\partial s}}{\Phi _u}(s,{t_0}) > 0$;由式(8)及引理1(ⅱ)知,当s>0充分大时,$\frac{\partial }{{\partial s}}{\Phi _u}(s,{t_0}) < 0$. 因此,∃s0>0,使得$\frac{\partial }{{\partial s}}{\Phi _u}(s,{t_0}) = 0$.下证s0是唯一的.若不然,假设存在s1,s2,不妨设 0<s1s2,使得$\frac{\partial }{{\partial s}}{\Phi _u}({s_1},{t_0}) = \frac{\partial }{{\partial s}}{\Phi _u}({s_2},{t_0}) = 0$.则由式(8)知

\[\left( {\frac{1}{{s_1^2}} - \frac{1}{{s_2^2}}} \right)a||{u^ + }|{|^2} + \left( {\frac{1}{{s_1^2}} - \frac{1}{{s_2^2}}} \right)bt_0^2||{u^ + }|{|^2}||{u^ - }|{|^2} = \int {_\Omega \left( {\frac{{f({s_1}{u^ + }){u^ + }}}{{{{({s_1})}^3}}} - \frac{{f({s_1}{u^ + }){u^ + }}}{{{{({s_2})}^3}}}} \right)} .\]

由(f3)得矛盾,故存在唯一的s0>0,使得$\frac{\partial }{{\partial s}}{\Phi _u}({s_0},{t_0}) = 0$.

定义函数φ1(t):=s(t),t∈R+,其中s(t)为上面得到的ss(t0)=s0. 由定义知$\frac{\partial }{{\partial s}}{\Phi _u}({\varphi _1}(t),t) = 0$,容易证明,φ1是连续的有正下界,且当 t充分大时,φ1(t)≤ t. 类似地,对每个s∈R+,可以定义函数φ2(s),使得$\frac{{\partial {\Phi _u}}}{{\partial s}}(s,{\varphi _2}(s)) = 0$,s∈ R+,φ2是连续的有正下界,且当s充分大时,φ2(s)≤s.

下面用Brouwer不动点定理证明Φu存在临界点.由φ1,φ2的性质知存在C1>0,使得φ1(t)≤t,t>C1;φ2(s)≤ s,s>C1. 令C2=max{maxt∈[0,C1]φ1(t),maxs∈[0,C1]φ2(s)},C=max{C1,C2}.定义H:[0,C]×[0,C]→R+×R+,H(s,t)=(φ1(t),φ2(s)).由定义可知H(s,t)∈[0,C]×[0,C].注意到H是连续的,故由Brouwer不动点定理知∃(s′,t′)∈[0,C]×[0,C],使得(φ1(t′),φ2(s′))=(s′,t′). 通过φ1,φ2的定义知

\[\frac{{\partial {\Phi _u}}}{{\partial s}}\left( {s\prime ,t\prime } \right) = \frac{{\partial {\Phi _u}}}{{\partial t}}\left( {s\prime ,t\prime } \right) = 0,\]

因此,(s′,t′)是Φu的临界点. 下证临界点是唯一的.

显然,vM时,(1,1) 是Φv的临界点.首先证明(1,1)是Φv的唯一临界点. 假设$\left( {\tilde s,\tilde t} \right)$也是Φv的临界点,不妨设$o \le \tilde t \le \tilde s$ ,则有

\[a\tilde s||{\upsilon ^ + }|{|^2} + b{{\tilde t}^3}||{\upsilon ^ + }|{|^4} + b\tilde s{{\tilde t}^2}||{\upsilon ^ + }|{|^2}||{\upsilon ^ - }|{|^2} = {\smallint _\Omega }f\left( {\tilde s{\upsilon ^ + }} \right){\upsilon ^ + }.\] (9)
\[a\tilde t||{\upsilon ^ - }|{|^2} + b{{\tilde t}^3}||{\upsilon ^ - }|{|^4} + b\tilde t{{\tilde s}^2}||{\upsilon ^ + }|{|^2}||{\upsilon ^ - }|{|^2} = {\smallint _\Omega }f\left( {\tilde t{\upsilon ^ - }} \right){\upsilon ^ - }.\] (10)

由式(9)知

\[\left( {\frac{1}{{{{\tilde s}^2}}} - 1} \right)a||{\upsilon ^ + }|{|^2} \ge \int {_\Omega } \left( {\frac{{f\left( {\tilde s{\upsilon ^ + }} \right)}}{{{{\left( {\tilde s{\upsilon ^ + }} \right)}^3}}} - \frac{{f\left( {{\upsilon ^ + }} \right)}}{{{{\left( {{\upsilon ^ + }} \right)}^3}}}} \right){\left( {{\upsilon ^ + }} \right)^4}.\] (11)

由式(11)及(f3)知$o \le \tilde t \le \tilde s \le 1$. 类似地,由式(10)及(f3)知,$\tilde t \ge 1$.因此,$\tilde s = \tilde t = 1$,即(1,1) 是Φv 的唯一临界点. 若uX,u≠0,(s1,t1),(s2,t2)都是Φu的临界点,则v1=s1u++t1u-M,v2=s2u++t2u-M.

\[{\upsilon ^2} = \left( {\frac{{{s_2}}}{{{s_1}}}} \right){s_1}{u^ + } = \left( {\frac{{{t_2}}}{{{t_1}}}} \right){t_1}{u^ - } = \left( {\frac{{{s_2}}}{{{s_1}}}} \right)\upsilon _1^ + + \left( {\frac{{{t_2}}}{{{t_1}}}} \right){\upsilon _1} - \in M.\]

Φv,vM临界点的唯一性知,s2s1=t2t1=1. 因此,Φu(u∈ X,u±≠0)的临界点是唯一的.

引理4[13] 假设uX,u±≠0,则(su,tu)是Φu(s,t)的唯一的最大值点,其中(su,tu)由引理3得到.

引理5[13] 假设(f1)~(f4)成立,且uX,u±≠0,〈I′(u),u+〉≤0,〈I′(u),u-〉≤0,则0<su,tu≤1,其中(su,tu)由引理3得到.

引理6[13] 假设(f1)~(f4)成立,则 m>0可达,即∃uM,使得m=I(u).

2 定理1的证明

证明 证明引理6得到的极小化点u就是问题(1)的变号解. 用形变引理证明I′(u)=0.

令λ=min{|u+|2,|u-|2},由嵌入定理知|u|2Su‖,其中S为嵌入常数.

反证法. 假设I′(u)≠0,则∃r>0,α>0,使得‖v-u‖≤r时,‖I′(v)‖≥α.

δ∈(0,min{λ/(2S),r/3}),θ∈(0,min{1/2,δ/(2‖u‖)}),D=(1-θ,1+θ)×(1-θ,1+θ),(s,t)=su++tu-,(s,t)∈D.由上面的定义及引理4可得,$\tilde m: = \mathop {\max I}\limits_{\partial D} \circ \phi < m.$

取$\varepsilon : = \min \left\{ {\left( {m - \tilde m} \right)/2,a\delta /8} \right\},S = \left\{ {\upsilon \in X,||\upsilon - u|| \le \delta } \right\}.$则由假设知

\[||{I^\prime }(\upsilon )|| \ge 8\varepsilon /\delta ,\upsilon \in {I^{ - 1}}\left( {\left[ {m - 2\varepsilon ,m + 2\varepsilon } \right]} \right) \cap {S_{2\delta .}}\] (12)

应用形变引理[20],则存在泛函η∈([0,1]×X,X),使得

(a) $u \notin {I^{ - 1}}\left( {\left[ {m - 2\varepsilon ,m + 2\varepsilon } \right]} \right) \cap {S_{2\delta .}}$时,η(1,u)=u.

(b) $\eta \left( {1,{I^{m + \varepsilon }} \cap S} \right) \subset {I^{m - \varepsilon }}.$

(c) $||\eta \left( {1,u} \right) - u|| \le \delta ,u \in X.$

首先证明

\[\mathop {\max I}\limits_{(s,t) \in \bar D} \left( {\eta \left( {1,\phi (s,t)} \right)} \right) < m.\] (13)

由引理4知,I(φ(s,t)))≤m<m+ε,即φ(s,t)∈Im+ε. 由于‖φ(s,t)-u2=‖su++tu--u+-u-2≤2((s-1)2u+2+(t-1)2u-2)≤2 θ2u2<δ2,则φ(s,t)∈ S. 故由(b)知,I(η(1,φ(s,t)))<m-ε.因此式(13)成立.

下证

\[\eta \left( {1,\phi (D)} \right) \cap M \ne \emptyset .\]

定义γ(s,t):=η(1,φ(s,t)),

Ψ1(s,t)=(〈I′(φ(s,t)),su+〉),〈I′(φ(s,t)),su-〉)=(P(s,t),Q(s,t)),

Ψ2(s,t)=(〈I(γ(s,t)),(γ(s,t))+〉,〈I(γ(s,t)),(γ(s,t))-〉).

直接计算得

\[\begin{array}{*{20}{l}} {\frac{{\partial P(s,t)}}{{\partial s}}{|_{(1,1)}}}&{ = a||{u^ + }|{|^2} + 3b||{u^ + }|{|^4} + b||{u^ + }|{|^2}||{u^ - }|{|^2} - \int {_\Omega } {f^\prime }({u^ + }){{({u^ + })}^2} \le }\\ {}&{a||{u^ + }|{|^2} + 3b||{u^ + }|{|^4} + b||{u^ + }|{|^2}||{u^ - }|{|^2} - 3\int {_\Omega } {f^\prime }({u^ + }){u^ + } = }\\ {}&{ - 2a||{u^ + }|{|^2} - 2b||{u^ + }|{|^2}||{u^ - }|{|^2},} \end{array}\]
\[\begin{array}{*{20}{l}} {\frac{{\partial Q(s,t)}}{{\partial s}}{|_{(1,1)}}}&{ \le - 2a||{u^ - }|{|^2} - 2b||{u^ + }|{|^2}||{u^ - }|{|^2},\frac{{\partial P}}{{\partial t}}{{\left| {_{(1,1)} = \frac{{\partial Q}}{{\partial s}}} \right|}_{(1,1)}} = 2b||{u^ + }|{|^2}||{u^ - }|{|^2},}\\ {}&{{J_{{\psi _1}}}(1,1) = \frac{{\partial Q}}{{\partial s}}{{\left| {_{(1,1)} = \frac{{\partial P}}{{\partial t}}} \right|}_{(1,1)}}{{\left. { - \frac{{\partial Q}}{{\partial s}}} \right|}_{(1,1)}}{{\left. { = \frac{{\partial Q}}{{\partial s}}} \right|}_{(1,1)}} > 0.} \end{array}\]

因为Ψ1C1的且(1,1)是一个孤立零点,故

deg(ψ1,D,0)=ind(ψ1,(1,1))=sgnJΨ1(1,1)=1.

由于$\tilde m < m - \varepsilon $,故由(a)知ψ(s,t)=γ(s,t),(s,t)∈$\partial $D. 因此,由Brouwer度的边界值性质知,deg(Ψ1,D,0)=deg(Ψ2,D,0)=1.即∃(s0,t0)∈D,使得Ψ2(s0,t0)=0. 下证(γ(s0,t0))±≠0.|(ψ(s0,t0))+|2=s0|u+|2≥λ/2,|(ψ(s0,t0))-|2=t0|u-|2≥λ/2.由(c)知|γ(s0,t0)-ψ(s0,t0)|2Sγ(s0,t0)-ψ(s0,t0)‖≤,这表明|(γ(s0,t0))±-(ψ(s0,t0))±|2≤|γ(s0,t0)-ψ(s0,t0)|2. 因此,|(γ(s0,t0))±|2≥|(ψ(s0,t0))±|2->0. 故(γ(s0,t0))±≠0. 因此,γ(s0,t0)∈M,这与式(13)矛盾. 综上所述,I′(u)=0,即u是问题(1)的一个变号解,且是能量最小的变号解.证毕.

参考文献
[1] HE Xiaoming,ZOU Wenming.Infinitely many positive solutions for Kirchhoff-type problems[J]. Nonlinear Anal,2009,70(3):1407-1414.
Click to display the text
[2] HE Xiaoming,ZOU Wenming.Existence and concentration behavior of positive solutions for a Kirchhhoff equation in R3[J].J Differential Equations,2012,252(2):1813-1834.
Click to display the text
[3] LI Gongbao,YE Hongyu.Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3[J].J Differential Equations,2014,257(2):566-600.
Click to display the text
[4] MAO Anmin,ZHANG Zhitao.Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition[J].Nonlinear Anal,2009,70(3):1275-1287.
Click to display the text
[5] ZHANG Hui,ZHANG Fubao.Ground states for the nonlinear Kirchhoff type problems[J].J Math Anal Appl,2015,423(2):1671-1692.
Click to display the text
[6] WANG Zhengping,ZHOU Huansong.Sign-changing solutions for the nonlinear Schödinger-Poisson system in R3[J].Calc Var PDEs,2015,52(3):927-943.
Click to display the text
[7] GUO Z.Ground states for Kirchhoff equations without compact condition[J].J Differential Equations,2015,259(7):2884-2902.
Click to display the text
[8] LIU Zhisu,GUO Shuanjiang.Existence of positive ground state solutions for Kirchhoff type problems[J].Nonlinear Anal,2015,120:1-13.
Click to display the text
[9] ZHANG Zhitao,PERERA K.Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow[J].J Math Appl,2006,317(2):456-463.
Click to display the text
[10] XIE Qilin,MA Shiwang.Existence and concentration of positive solutions for Kirchhoff-type problems with a steep well potential[J].J Math Anal Appl,2015,431(2):1210-1223.
Click to display the text
[11] 李宝平.一类Kirchhoff方程解的存在性与渐进性质[J].数学的实践与认识,2015,45(19):265-270. LI Baoping.Existence and asymptotic behavior of the solution for a class of Kirchhoff equation[J].Mathematics in Practice and Theory,2015,45(19):265-270.
Click to display the text
[12] 王田娥,李健,李俊杰,等.一类超线性p-Kirchhoff型方程非平凡解的存在性[J].吉林大学学报:理学版,2015,53(2):161-165. WANG Tian'e,LI Jian,LI Junjie,et al.Existence of nontrivial solutions of a class of p-Kirchhoff type equations[J].Journal of Jilin University:Science Edition,2015,53(2):161-165.
Click to display the text
[13] 廖家锋,张鹏,唐春雷.一类渐近4次线性Kirchhoff方程的多解性[J].西南师范大学学报:自然科学版,2014,39(8):8-11. LIAO Jiafeng,ZHANG Peng,TANG Chunlei.On multiplicity of solutions for a class of asymptotically 4-linear Kirchhoff equations[J].Journal of Southwest China Normal University:Natural Science Edition,2014,39(8):8-11.
Cited By in Cnki (4)
[14] 宋宇鹏.一类p-Kirchhoff方程无穷多解的存在性[J].纺织高校基础科学学报,2015,28(2):204-207. SONG Yupeng.Existence of infinitely many solutions for a class of p-Kirchhoff equations[J].Basic Sciences Journal of Textile Universities,2015,28(2):204-207.
Click to display the text
[15] 王瑞娜,王小军,高小丽.Kirchhoff方程解的存在性与多解性[J].太原师范学院学报:自然科学版,2011,10(4):4-7. WANG Ruina,WANG Xiaojun,GAO Xiaoli.Existence and multiplicity of solutions to Kirchhoff type equations[J].Journal of Taiyuan Normal University:Natural Science Edition,2011,10(4):4-7.
Click to display the text
[16] 姜静香.一类Kirchhoff型方程退化时整体解的存在性[J].渤海大学学报:自然科学版,2015,36(1):10-15. JIANG Jingxiang.Existence of global solutions of the equations of degenerate Kirchhoff type[J].Journal of Bohai University:Natural Science Edition,2015,36(1):10-15.
Click to display the text
[17] WEI Shuai.Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains[J].J Differential Equations,2015,259(4):1256-1274.
Click to display the text
[18] MOSER J.A sharp form of an inequality by N.Trudinger[J].J Indiana Univ Math,1970,20(11):1077-1092.
Click to display the text
[19] FIGUEIREDO D G D,MIYAGAKI O H,RUF B.Elliptic equations in R2 with nonlinearities in the critical growth range[J].Calc Var Partial Differential Equations,1995,3(2):139-153.
Click to display the text
[20] WILLEM M.Minimax theorems[M].Boston:Birkhauser,1996:24.
Click to display the text
西安工程大学; 中国纺织服装教育学会主办
0

文章信息

郭红
GUO Hong
一类Kirchhoff方程最小能量变号解的存在性
Existence of sign-changing solution with least energy for a class of Kirchhoff equations
纺织高校基础科学学报, 2016, 29(2): 135-140
Basic Sciences Journal of Textile Universities, 2016, 29(2): 135-140.

文章历史

收稿日期: 2015-08-31

相关文章

工作空间