一类混合未定权益的套期保值问题
陈会, 刘宣会, 张琳     
西安工程大学 理学院, 陕西 西安 710048
摘要: 在股票价格服从Levy过程时,研究多个混合型未定权益的最优套期保值问题,通过构造倒向随机微分方程和随机LQ最优控制的方法,得到了多个混合型未定权益最优套期保值策略的显式表示,同时讨论了多个混合未定权益与单个未定权益最优套期保值策略之间的关系,即其间具有凸性的关系.
关键词混合未定权益     均值-方差准则     Levy过程     倒向随机微分方程    
The problem about the hedging strategy of a mix contingent claim
CHEN Hui, LIU Xuanhui, ZHANG Lin     
School of Science, Xi'an Polytechnic University, Xi'an 710048, China
Abstract: When the stock price follows the Levy process, the optimal hedging problem of the multiple mixed contingent is studied.By constructing backward stochastic differential equation and linear-quadratic (LQ) optimal control, the optimal hedging strategy is obtained, and the relationship is discussed between the mixed contingent claims and individual contingent claim under the optimal hedging strategy, that is to say the relationship is convexity.
Key words: mixed contingent claims     mean-variance criterion     Levy process     backward stochastic differential equation    
0 引言

Markowitz提出均值-方差模型为现代套期保值理论奠定了基础, 并吸引了大量的学者对此进行推广和研究.文献[1]研究了资产价格为特殊半鞅时在随机利率下运用均值-方差通过适当的概率测度变换, 将具有随机利率的情形简化为非随机利率情形, 再利用Galtchouk-Kunita-Watanabe分解, 获得了资产价格为一般的特殊半鞅具有随机利率的均值-方差套期保值策略.文献[2]在标的资产价格服从具有随机方差的几何布朗运动, 且随机方差服从一个具有最大波动幅度的几何布朗运动时, 在均值-方差准则下, 运用随机微分对策的方法给出了期权的最优套期保值策略.文献[3]通过概率测度变化和K-W投影技术得到均值-方差准则下的最优套期保值策略.文献[4]研究了股价服从受控的马氏过程时, 在随机市场系数的金融市场中, 先引入倒向随机里卡提方程, 然后运用随机LQ控制得到均值-方差准则下的最优套期保值策略.文献[5]研究了当股价服从受控的马氏过程时, 在随机市场参数的不完备金融市场下, 运用随机LQ控制与倒向随机微分方程的方法在均值-方差准则下给出了最优套期保值策略的显式表示.文献[6]运用动态规划原理, 在标的资产服从由布朗运动和违约过程共同作用下, 把均值-方差准则下的套期保值策略的存在性问题转化为一列耦合倒向随机微分方程解的存在性问题, 得到了最优套期保值策略.文献[7]在保险债务服从重随机Poisson过程时, 采用HJB方法得到了时间一致性均值-方差准则下的寿命风险的最优套期保值策略.文献[8]在股票价格服从跳-扩散过程时, 运用倒向随机微分方程及随机控制理论得到了均值-方差准则下的最优套期保值策略.文献[9-11]在股票价格服从带有Markov调制参数的跳跃-扩散过程时, 通过构造倒向微分方程和随机LQ最优控制方法, 得到了在两个混合未定权益下的最优套期保值策略的显式表示.文献[12-16]研究得到了基于均值方差准则下的最优套期保值策略.以上研究均为单个或两个未定权益在不同准则下的最优套期保值策略, 本文研究了在股票价格服从Levy过程时多个混合未定权益的最优套期保值策略, 并讨论了多个混合未定权益最优套期保值策略与单个未定权益最优套期保值策略的关系.

1 问题框架

假设金融市场上仅有2种证券, 一种是无风险资产, 称为债券P0, 另一种是风险资产, 称为股票P, 当股票价格受到多种冲击时, 可认为股票价格服从Levy过程.设无风险资产P0(t) 服从微分方程

$ {\rm{d}}{P_0}\left( t \right) = r{P_0}\left( t \right){\rm{d}}t,{p_o}\left( 0 \right) = 1,t \in \left[ {0,T} \right]. $ (1)

风险资产P(t) 服从微分方程

$ \begin{array}{l} {\rm{d}}P\left( t \right) = P\left( t \right)\left[ {\hat \mu \left( {t,s\left( t \right)} \right){\rm{d}}t + \sigma \left( {t,s\left( t \right)} \right){\rm{d}}W\left( t \right) + \varphi \left( {t,s\left( t \right)} \right)\int_{R/\left\{ 0 \right\}} {\left( {\exp \left( z \right) - 1} \right)\tilde N\left( {{\rm{d}}t,{\rm{d}}z} \right)} } \right],\\ \;\;\;\;\;\;\;\;\;\;\;\;P\left( 0 \right) = P,t \in \left[ {0,T} \right]. \end{array} $ (2)

其中, $\begin{align} & \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\mu }\left( t, s\left( t \right) \right)=\mu \left( t, s\left( t \right) \right)+\frac{1}{2}{{\sigma }^{2}}\left( t, s\left( t \right) \right)+ \\ & \int_{R\backslash \left\{ 0 \right\}}{\left( \exp \left( z \right)-1-z{{I}_{\left\{ \left| z \right|<1 \right\}}} \right)}\text{ }\!\!\pi\!\!\text{ }\left( \text{d}z \right) \\ \end{align}$, 设(Ω, F, P) 为一完备的概率空间, W(t) 为(Ω, F, P) 上标准的Brown运动, Yk为独立同分布列.N(dt, dz) 是R+×R-值的Poisson过程, 具有强度dt×π(dz), π(dz) 是R\{0}上的σ-有限Borel测度且$\int_{R\backslash \left\{ 0 \right\}}{\min \left( 1-{{z}^{2}} \right)}\text{ }\!\!\pi\!\!\text{ }\left( \text{d}z \right)<\infty $, 对某个R∈[0, ∞],

$ \tilde N\left( {{\rm{d}}t,{\rm{d}}z} \right) = \left\{ \begin{array}{l} N\left( {{\rm{d}}t,{\rm{d}}z} \right) - {\rm{ \mathsf{ π} }}\left( {{\rm{d}}z} \right){\rm{d}}t,\left| z \right| < 1,\\ N\left( {{\rm{d}}t,{\rm{d}}z} \right),\left| z \right| \ge 1. \end{array} \right. $

WtN(dt, dz) 独立.

$ \begin{array}{l} {p_{ij}}\left( t \right) = p\left\{ {s\left( t \right) = j\left| {s\left( 0 \right) = i} \right.} \right\},t > 0,i,j = 1,2, \cdots ,m.\\ {q_{ij}} = \left\{ \begin{array}{l} \mathop {\lim }\limits_{t \to {0^ + }} \frac{{{p_{ij\left( t \right)}}}}{t},i \ne j\\ \mathop {\lim }\limits_{t \to {0^ + }} \frac{{{p_{ij\left( t \right) - 1}}}}{t},i = j \end{array} \right.\;\;\;\;i,j = 1,2, \cdots ,l.\\ {F_t} = \sigma \left\{ {W\left( s \right),N\left( s \right),s\left( s \right):0 \le s \le t} \right\}. \end{array} $

LFt2 (T:R) 表示适应Ft的可测随机过程f(t) 而且满足:$\text{E}\int_{0}^{T}{{{\left| f\left( t \right) \right|}^{2}}\text{d}t}<\infty $的集合. LFt2 (Ω:R) 表示Ft适应的均方可积随机变量ξ的集合, 而且具有范数:‖ξ‖=[E[ξ]2]1/2.金融市场参数μ(t, s(t)), σ(t, s(t)), φ(t, s(t)) 均为Ft适应的随机过程.

假设投资者拥有的初始财富为x, 风险资产在t时刻的投资量为π(t), 财富为x(t), 那么x(t) 满足下列随机微分方程

$ \begin{array}{*{20}{c}} {{\rm{d}}x\left( t \right) = \left\{ {rx\left( t \right) + \left[ {\left( {\hat \mu \left( {t,s\left( t \right) - r} \right){\rm{ \mathsf{ π} }}\left( t \right)} \right.} \right]} \right\}{\rm{d}}t + {\rm{ \mathsf{ π} }}\left( t \right)\sigma \left( {t,s\left( t \right)} \right){\rm{d}}W\left( t \right) + }\\ {{\rm{ \mathsf{ π} }}\left( t \right)\varphi \left( {t,s\left( t \right)} \right)\int_{R/\left\{ 0 \right\}} {\left( {\exp \left( z \right) - 1} \right)\tilde N\left( {{\rm{d}}t,{\rm{d}}z} \right)} .} \end{array} $ (3)

其中, $\begin{align} & \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\mu }\left( t, s\left( t \right) \right)=\mu \left( t, s\left( t \right) \right)+\frac{1}{2}{{\sigma }^{2}}\left( t, s\left( t \right) \right)+ \\ & \int_{R\backslash \left\{ 0 \right\}}{\left( \exp \left( z \right)-1-z{{I}_{\left\{ \left| z \right|<1 \right\}}} \right)}\text{ }\!\!\pi\!\!\text{ }\left( \text{d}z \right) \\ \end{align}$.令$b\left( t, s\left( t \right) \right)=\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\mu }\left( t, s\left( t \right) \right)-r$, 则式(3) 可表示为

$ \begin{array}{*{20}{c}} {{\rm{d}}x\left( t \right) = \left[ {rx\left( t \right) + b\left( {t,s\left( t \right)} \right){\rm{ \mathsf{ π} }}\left( t \right)} \right]{\rm{d}}t + {\rm{ \mathsf{ π} }}\left( t \right)\sigma \left( {t,s\left( t \right)} \right){\rm{d}}W\left( t \right) + }\\ {{\rm{ \mathsf{ π} }}\left( t \right)\varphi \left( {t,s\left( t \right)} \right)\int_{R/\left\{ 0 \right\}} {\left( {\exp \left( z \right) - 1} \right)\tilde N\left( {{\rm{d}}t,{\rm{d}}z} \right)} .} \end{array} $ (4)

定义1  π(t) 是可容许策略, 即π(t) 为使得方程(4) 存在唯一解且π(t)∈L2(T:R).记所有可容许策略集合为Uπ={π(t)∈L2(T:R)|方程(4) 存在唯一解}.

定义2  称ξ为一未定权益, 若ξFt可测的, 而且ξL2(Ω:R).

定义3  称ξ为一个混合型未定权益, 若ξ1, ξ2, …, ξnn个不同的未定权益而且∀a1, a2, …, anR, a1, a2, …, an>0, a1+a2+…+an=1, ξ=a1ξ1+a2ξ2+…+anξn.

考虑均值-方差准则下的套期保值问题(P):

$ \left\{ \begin{array}{l} \min {\rm{E}}{\left[ {x\left( T \right) - \left( {{a_1}{\xi _1} + {a_2}{\xi _2} + \cdots + {a_n}{\xi _n}} \right)} \right]^2},\\ s,{\rm{t}}.{\rm{ \mathsf{ π} }}\left( t \right) \in {U_{\rm{ \mathsf{ π} }}},\\ x\left( t \right)满足\left( 1 \right). \end{array} \right. $
2 最优套期保值策略

假设1

$ {\rm{E}}\int_0^T {\left\{ {P\left( t \right)\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right]{\rm{ \mathsf{ π} }}\left( t \right)\varphi \left( {t,s\left( t \right)} \right)} \right\}} {\rm{d}}t < \infty . $

假设2   EP2(t) dt < ∞.

假设3   E[π(t)φ(t, s(t))-1]2 < ∞.

定理1  在假设1, 2, 3条件下, 问题(P) 的最优解为

$ \begin{array}{l} \pi \left( t \right) = \frac{{\left[ {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right) - x\left( t \right)} \right]}}{{{\sigma ^2}\left( {t,s\left( t \right)} \right)}} \cdot \left[ {\left( {b\left( {t,s\left( t \right)} \right)} \right.} \right. + \\ \;\;\;\;\;\;\;\;\;\;\left. {\varphi \left( {t,s\left( t \right)} \right) + \left. {\frac{{\sigma \left( {t,s\left( t \right)} \right){h_1}\left( {t,s\left( t \right)} \right)}}{{p\left( {t,s\left( t \right)} \right)}}} \right) - \sigma \left( {t,s\left( t \right)} \right)} \right]. \end{array} $

证明  引入倒向随机微分方程

$ \begin{array}{l} \left\{ \begin{array}{l} {\rm{d}}p\left( {t,s\left( t \right)} \right) = m\left( {t,s\left( t \right)} \right){\rm{d}}t + {h_1}\left( {t,s\left( t \right)} \right){\rm{d}}W\left( t \right),\\ p\left( {T,s\left( T \right)} \right) = 1,p\left( {t,s\left( t \right)} \right) > 0. \end{array} \right.\\ \left\{ \begin{array}{l} {\rm{d}}{\mathit{h}_1}\left( {t,s\left( t \right)} \right) = {\beta _1}\left( {t,s\left( t \right)} \right){\rm{d}}t + {\rm{d}}W\left( t \right),\\ {h_1}\left( {T,s\left( T \right)} \right) = {\xi _1}. \end{array} \right.\\ \left\{ \begin{array}{l} {\rm{d}}{\mathit{h}_2}\left( {t,s\left( t \right)} \right) = {\beta _2}\left( {t,s\left( t \right)} \right){\rm{d}}t + {\rm{d}}W\left( t \right),\\ {h_2}\left( {T,s\left( T \right)} \right) = {\xi _2}. \end{array} \right.\\ \ldots \\ \left\{ \begin{array}{l} {\rm{d}}{\mathit{h}_n}\left( {t,s\left( t \right)} \right) = {\beta _n}\left( {t,s\left( t \right)} \right){\rm{d}}t + {\rm{d}}W\left( t \right),\\ {h_n}\left( {T,s\left( T \right)} \right) = {\xi _n}. \end{array} \right. \end{array} $
$ \begin{array}{l} {\rm{d}}\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right] = \\ \left[ {rx\left( t \right) + b\left( {t,s\left( t \right)} \right){\rm{ \mathsf{ π} }}\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right]{\rm{d}}t + \\ \left[ {{\rm{ \mathsf{ π} }}\left( t \right)\sigma \left( {t,s\left( t \right)} \right) - 1} \right]{\rm{d}}W\left( t \right) + \left[ {{\rm{ \mathsf{ π} }}\left( t \right)\varphi \left( {t,s\left( t \right)} \right)} \right]\int_{R/\left\{ 0 \right\}} {\left( {\exp \left( z \right) - 1} \right)\tilde N\left( {{\rm{d}}t,{\rm{d}}z} \right)} . \end{array} $ (5)

运用Ito公式得

$ \begin{array}{l} {\rm{d}}\left\{ {p\left( {t,s\left( t \right)} \right){{\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right]}^2}} \right\} = \\ p\left( {t,s\left( t \right)} \right){\rm{d}}{\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right]^2} + \\ {\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right]^2}{\rm{d}}p\left( {t,s\left( t \right)} \right) + \\ {\rm{d}}p\left( {t,s\left( t \right)} \right) \cdot {\rm{d}}{\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right.} \right]^2} = \\ {\rm{2}}p\left( {t,s\left( t \right)} \right)\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + } \right.} \right.\\ \left. {\left. {{a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right]\left( {{\rm{ \mathsf{ π} }}\left( t \right)\sigma \left( {t,s\left( t \right)} \right) - 1} \right){\rm{d}}W\left( t \right) + \\ 2p\left( {t,s\left( t \right)} \right)\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + } \right.} \right.\\ {a_n}{h_n}\left( {t,s\left( t \right)} \right){\rm{ \mathsf{ π} }}\left( t \right)\varphi \left( {t,s\left( t \right)} \right)\int_{R/\left\{ 0 \right\}} {\left( {\exp \left( z \right) - 1} \right)\tilde N\left( {{\rm{d}}t,{\rm{d}}z} \right)} + \\ 2p\left( {t,s\left( t \right)} \right)\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right]\left\{ {rx\left( t \right)} \right. + \\ b\left( {t,s\left( t \right)} \right){\rm{ \mathsf{ π} }}\left( t \right) - \left( {{a_1}{\beta _1}\left( {t,s\left( t \right)} \right) + {a_2}{\beta _2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{\beta _n}\left( {t,s\left( t \right)} \right)} \right) + {\rm{ \mathsf{ π} }}\left( t \right)\varphi \left( {t,s\left( t \right)} \right) + \\ \left. {p\left( {t,s\left( t \right)} \right){{\left[ {{\rm{ \mathsf{ π} }}\left( t \right)\sigma \left( {t,s\left( t \right)} \right) - 1} \right]}^2}} \right\}{\rm{d}}t + \\ \sum\limits_{j = 1}^m {{q_{s\left( i \right)j}}\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right]} p\left( {t,s\left( t \right)} \right){\rm{d}}t + \\ {\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right]^2}m\left( {t,s\left( t \right)} \right){\rm{d}}t + \\ {\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right]^2}{\beta _1}\left( {t,s\left( t \right)} \right){\rm{d}}W\left( t \right) + \\ 2\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right] \cdot \\ \left( {{\rm{ \mathsf{ π} }}\left( t \right)\sigma \left( {t,s\left( t \right)} \right) - 1} \right){\beta _1}\left( {t,s\left( t \right)} \right){\rm{d}}t. \end{array} $ (6)

对式(6) 从0到T积分并求数学期望可得

$ \begin{array}{l} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{E}}\left\{ {p\left( {T,s\left( T \right)} \right){{\left[ {x\left( T \right) - \left( {{a_1}{h_1}\left( {T,s\left( T \right)} \right)} \right) + {a_2}{h_2}\left( {T,s\left( T \right)} \right) + \cdots + {a_n}{h_n}\left( {T,s\left( T \right)} \right)} \right]}^2}} \right\} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;p\left( {0,s\left( 0 \right)} \right){\left[ {x\left( 0 \right) - \left( {{a_1}{h_1}\left( {0,s\left( 0 \right)} \right)} \right. + {a_2}{h_2}\left( {0,s\left( 0 \right)} \right) + \cdots + {a_n}{h_n}\left( {0,s\left( 0 \right)} \right)} \right]^2} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{E}}\int_0^T {p\left( {t,s\left( t \right)} \right)H\left( {t,s\left( t \right)} \right){\rm{d}}t} .\\ H\left( {t,s\left( t \right)} \right) = 2\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + } \right.} \right.\\ \left. {\left. {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right]\left[ {rx\left( t \right) + b\left( {t,s\left( t \right)} \right){\rm{ \mathsf{ π} }}\left( t \right)} \right. - \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left. {\left( {{a_1}{\beta _1}\left( {t,s\left( t \right)} \right) + {a_2}{\beta _2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{\beta _n}\left( {t,s\left( t \right)} \right)} \right) + {\rm{ \mathsf{ π} }}\left( t \right)\varphi \left( {t,s\left( t \right)} \right)} \right]{\rm{d}}t + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\left[ {{\rm{ \mathsf{ π} }}\left( t \right)\sigma \left( {t,s\left( t \right)} \right) - 1} \right]^2} + \sum\limits_{j = 1}^m {{q_{s\left( i \right)j}}\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right)} \right.} \right.} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left. {\left. {{a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right] + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + } \right.} \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left. {\left. {{a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right]\left( {{\rm{ \mathsf{ π} }}\left( t \right)\sigma \left( {t,s\left( t \right)} \right) - 1} \right)\frac{{{h_1}\left( {t,s\left( t \right)} \right)}}{{p\left( {t,s\left( t \right)} \right)}} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right]^2}\frac{{m\left( {t,s\left( t \right)} \right)}}{{p\left( {t,s\left( t \right)} \right)}} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\sigma ^2}\left( {t,s\left( t \right)} \right){{\rm{ \mathsf{ π} }}^2}\left( t \right) + \left\{ {2\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + } \right.} \right.} \right.\\ \left. {\left. {\left. {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right] \cdot \left[ {b\left( {t,s\left( t \right)} \right) + \varphi \left( {t,s\left( t \right)} \right) + \frac{{\sigma \left( {t,s\left( t \right)} \right){h_1}\left( {t,s\left( t \right)} \right)}}{{p\left( {t,s\left( t \right)} \right)}}} \right] \cdot 2\sigma \left( {t,s\left( t \right)} \right)} \right\}{\rm{ \mathsf{ π} }}\left( t \right) + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right] \cdot \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left[ {rx\left( t \right) - \left( {{a_1}{\beta _1}\left( {t,s\left( t \right)} \right) + {a_2}{\beta _2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{\beta _n}\left( {t,s\left( t \right)} \right)} \right) - \frac{{h\left( {t,s\left( t \right)} \right)}}{{p\left( {t,s\left( t \right)} \right)}}} \right] + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\sum\limits_{j = 1}^m {{q_{s\left( i \right)j}}\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right]} + 1 + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {t,s\left( t \right)} \right) + {a_2}{h_2}\left( {t,s\left( t \right)} \right) + \cdots + {a_n}{h_n}\left( {t,s\left( t \right)} \right)} \right)} \right]^2}\frac{{m\left( {t,s\left( t \right)} \right)}}{{p\left( {t,s\left( t \right)} \right)}}. \end{array} $ (7)

在式(7) 中取

$ \begin{array}{l} {\beta _i}\left( {t,s\left( t \right)} \right) = \frac{{{{\left[ {b\left( {t,s\left( t \right)} \right) + \varphi \left( {t,s\left( t \right)} \right) + \frac{{\sigma \left( {t,s\left( t \right)} \right){h_1}\left( {t,s\left( t \right)} \right)}}{{p\left( {t,s\left( t \right)} \right)}}} \right]}^2}}}{{ - 2{a_i}{\sigma ^2}\left( {t,s\left( t \right)} \right)}}x\left( t \right) + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{{{\left[ {b\left( {t,s\left( t \right)} \right) + \varphi \left( {t,s\left( t \right)} \right) + \frac{{\sigma \left( {t,s\left( t \right)} \right){h_i}\left( {t,s\left( t \right)} \right)}}{{S\left( {t,s\left( t \right)} \right)}}} \right]}^2}}}{{2{\sigma ^2}\left( {t,s\left( t \right)} \right)}}{h_i}\left( {t,s\left( t \right)} \right) + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{{{\left[ {x\left( t \right) - {a_i}{h_i}\left( {t,s\left( t \right)} \right)} \right]}^2}}}{{2{\sigma ^2}\left( {t,s\left( t \right)} \right)}} \cdot \frac{{m\left( {t,s\left( t \right)} \right)}}{{p\left( {t,s\left( t \right)} \right)}},\left( {1 \le i \le n - 1} \right). \end{array} $ (8)
$ \begin{array}{l} {\beta _n}\left( {t,s\left( t \right)} \right) = \frac{{\left[ {b\left( {t,s\left( t \right)} \right) + \varphi \left( {t,s\left( t \right)} \right) + \frac{{\sigma \left( {t,s\left( t \right)} \right){h_1}\left( {t,s\left( t \right)} \right)}}{{p\left( {t,s\left( t \right)} \right)}}} \right]}}{{ - 2{a_n}\sigma \left( {t,s\left( t \right)} \right)}} + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{{{{\left[ {b\left( {t,s\left( t \right)} \right) + \varphi \left( {t,s\left( t \right)} \right) + \frac{{\sigma \left( {t,s\left( t \right)} \right){h_1}\left( {t,s\left( t \right)} \right)}}{{p\left( {t,s\left( t \right)} \right)}}} \right]}^2}}}{{2{\sigma ^2}\left( {t,s\left( t \right)} \right)}}{h_n}\left( {t,s\left( t \right)} \right) + \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2r - \frac{{{h_1}\left( {t,s\left( t \right)} \right)}}{{p\left( {t,s\left( t \right)} \right)}} + \sum\limits_{j = 1}^m {{q_{s\left( i \right)j}}} . \end{array} $ (9)
$ \begin{array}{l} {\rm{E}}\left\{ {P\left( {T,s\left( T \right)} \right){{\left[ {x\left( t \right) - \left( {{a_1}{h_1}\left( {T,s\left( T \right)} \right) + {a_2}{h_2}\left( {T,s\left( T \right)} \right) + \cdots + {a_n}{h_n}\left( {T,s\left( T \right)} \right)} \right)} \right]}^2}} \right\} = \\ P\left( {0,s\left( 0 \right)} \right){\left[ {x\left( 0 \right) - \left( {{a_1}{h_1}\left( {0,s\left( 0 \right)} \right) + {a_2}{h_2}\left( {0,s\left( 0 \right)} \right) + \cdots + {a_n}{h_n}\left( {0,s\left( 0 \right)} \right)} \right)} \right]^2} + \\ {\rm{E}}p\left( {t,s\left( t \right)} \right)H\left( {t,s\left( t \right)} \right){\rm{d}}t. \end{array} $ (10)

β1(t, s(t)), β2(t, s(t)), …, βn(t, s(t)) 分别满足式(8) 和(9) 时, H(t, s(t)) 就为π(t) 的完全平方式.这时π(t) 满足式(10), H(t, s(t))=0, 显然最小.

在式(10) 中, 当a1=1, a2=0, …, an=0时,可得πa1(t);当a1=0, a2=1, …, an=0时, 可得πa2(t);…;当a1=0, a2=0, …, an=1时,可得πan(t) 而且有

$ {a_1}{{\rm{ \mathsf{ π} }}_{a1}}\left( t \right) + {a_2}{{\rm{ \mathsf{ π} }}_{a2}}\left( t \right) + \cdots + {a_n}{{\rm{ \mathsf{ π} }}_{an}}\left( t \right) = {\rm{ \mathsf{ π} }}\left( t \right),\forall {a_1},{a_2}, \cdots ,{a_n} > 0,{a_1} + {a_2} + \cdots + {a_n} = 1. $

a1=1, a2=0, …, an=0时

$ {\rm{ \mathsf{ π} }}\left( t \right) = {{\rm{ \mathsf{ π} }}_{a1}}\left( t \right) = \frac{{\left[ {{h_1}\left( {t,s\left( t \right)} \right) - x\left( t \right)} \right]\left[ {b\left( {t,s\left( t \right)} \right) + \varphi \left( {t,s\left( t \right)} \right) + \frac{{\sigma \left( {t,s\left( t \right)} \right){h_1}\left( {t,s\left( t \right)} \right)}}{{p\left( {t,s\left( t \right)} \right)}}} \right] - \sigma \left( {t,s\left( t \right)} \right)}}{{{\sigma ^2}\left( {t,s\left( t \right)} \right)}}. $

a1=0, a2=1, …, an=0时,

$ {\rm{ \mathsf{ π} }}\left( t \right) = {{\rm{ \mathsf{ π} }}_{a2}}\left( t \right) = \frac{{\left[ {{h_2}\left( {t,s\left( t \right)} \right) - x\left( t \right)} \right]\left[ {b\left( {t,s\left( t \right)} \right) + \varphi \left( {t,s\left( t \right)} \right) + \frac{{\sigma \left( {t,s\left( t \right)} \right){h_1}\left( {t,s\left( t \right)} \right)}}{{p\left( {t,s\left( t \right)} \right)}}} \right] - \sigma \left( {t,s\left( t \right)} \right)}}{{{\sigma ^2}\left( {t,s\left( t \right)} \right)}}. $

a1=0, a2=0, …, an=1时,

$ \begin{array}{*{20}{c}} {{\rm{ \mathsf{ π} }}\left( t \right) = {{\rm{ \mathsf{ π} }}_{an}}\left( t \right) = \frac{{\left[ {{h_n}\left( {t,s\left( t \right)} \right) - x\left( t \right)} \right]\left[ {b\left( {t,s\left( t \right)} \right) + \varphi \left( {t,s\left( t \right)} \right) + \frac{{\sigma \left( {t,s\left( t \right)} \right){h_1}\left( {t,s\left( t \right)} \right)}}{{p\left( {t,s\left( t \right)} \right)}}} \right] - \sigma \left( {t,s\left( t \right)} \right)}}{{{\sigma ^2}\left( {t,s\left( t \right)} \right)}}.}\\ {{a_1}{{\rm{ \mathsf{ π} }}_{a1}}\left( t \right) + {a_2}{{\rm{ \mathsf{ π} }}_{a2}}\left( t \right) + \cdots + {a_n}{{\rm{ \mathsf{ π} }}_{an}}\left( t \right) = {\rm{ \mathsf{ π} }}\left( t \right).} \end{array} $

即多个未定权益的最优均值-方差套期保值策略相对于单个未定权益具有可加性.

3 结束语

在股票价格服从Levy过程时, 运用随机LQ控制, 并引入倒向随机微分方程得到了均值方差准则下具有多个混合型未定权益的最优套期保值策略, 同时讨论了多个混合未定权益与单个未定权益最优套期保值策略的关系, 即多个混合型未定权益的最优套期保值策略相对于单个未定权益具有可加性,即具有凸性.

参考文献
[1] 张海沨. 随机利率下的均值-方差最小套期保值[J]. 工程数学学报, 2007, 24(6): 726-729
ZHANG Haifeng. Mean-variance heding under stochastic interests[J]. Chinese Journal of Engineering Mathematics, 2007, 24(6): 726-729
[2] 刘海龙, 吴冲锋. 基于鲁棒控制的期权套期保值策略[J]. 控制与决策, 2001, 16(6): 974-976
LIU Hailong, WU Chongfeng. Option hedging strategy based on robust control[J]. Control and Decision, 2001, 16(6): 974-976
[3] GOURIEROUX C, LAURENT J P, PHAM H. Mean-variance hedging and numeraire[J]. Mathematical Finance, 1998, 8(3): 179-200 DOI:10.1111/mafi.1998.8.issue-3
[4] KOHLMANN M, TANG S. Global adopted solution of one-dimensional backward stochastic Riccati equations, with application to the mean-variance hedging[J]. Stochastic Processes and their Applications, 2002, 97(2): 255-288 DOI:10.1016/S0304-4149(01)00133-8
[5] LIM ANDREW E B. Quadratic hedging and mean-variance portfolio selection with random parameters in an incomplete market[J]. Mathematics of Operations Research, 2004, 29(1): 132-161 DOI:10.1287/moor.1030.0065
[6] GOUTTE S, NGOUPEYOU A. The use of BSDEs to characterize the mean-variance hedging problem and the variance optimal martingale measure for defaultable claims[J]. Stochastic Processes and their Applications, 2015, 125(4): 1323-1351 DOI:10.1016/j.spa.2014.10.017
[7] TAT Wong Wing, MEI CHIU Choi, HOI WONG Ying. Time-consistent mean-variance hedging of longevity risk:Effect of cointegration[J]. Insurance:Mathematics and Econimics, 2014, 56(1): 56-67
[8] 刘峰, 刘宣会. 基于均值-方差准则下的套期保值问题研究[J]. 哈尔滨商业大学学报, 2014, 30(1): 110-113
LIU Feng, LIU Xuanhui. Mean-variance hedging problem as stock price follows jump-diffusion process[J]. Journal of Harbin University of Commerce, 2014, 30(1): 110-113
[9] 刘宣会, 韩有攀, 张夏洁, 等. 一类混合型未定权益均值-方差准则下套期保值问题研[J]. 应用数学学报, 2015, 38(6): 1116-1125
LIU Xuanhui, HAN Youpan, ZHANG Xiajie, et al. The problem research on the hedging strategy of a mix contingent claim under mean-variance criterion[J]. Acta Mathematicae Applicatae Sinica, 2015, 38(6): 1116-1125
[10] 刘宣会, 胡奇英. 不完全市场上一种未定权益的套期保值策略[J]. 系统工程学报, 2004, 19(3): 285-289
LIU Xuanhui, HU Qiying. Hedging strategy of a contingent claim in incomplete market[J]. Journal of Systems Engineering, 2004, 19(3): 285-289
[11] 张柯妮, 刘宣会, 张金燕. 基于随机LQ控制的一类投资组合优化策略[J]. 纺织高校基础科学学报, 2012, 25(3): 346-350
ZHANG Keni, LIU Xuanhui, ZHANG Jinyan. A king of optimal portfolio selection problem based on stochastic LQ control[J]. Basic Sciences Journal of Textile Universities, 2012, 25(3): 346-350
[12] FOLLMER H, LEUKERT P. Efficient hedging cost versus shortfall risk[J]. Finance and Stochastic, 2000, 4(2): 117-146 DOI:10.1007/s007800050008
[13] ARAI T. An extension of mean-variance hedging to the discontinuous case[J]. Finance and Stochastic, 2005, 9(1): 129-139 DOI:10.1007/s00780-004-0136-5
[14] XIE Shuxiang. Continuous-times mean-variance portfolio selection with liability an regime[J]. Mathematics and Economics, 2009, 45: 148-155 DOI:10.1016/j.insmatheco.2009.05.005
[15] CZICHOWSKY C. Time-consistent mean-variance portfolio selection in discrete and continuous time[J]. Finance and Stochastic, 2013, 17(2): 227-271 DOI:10.1007/s00780-012-0189-9
[16] CHEN Zhiping, LI Gang, GUO Ju'e. Optimal investment policy in the time consistent mean-variance formulation[J]. Insurance:Mathematics and Economics, 2013, 52(2): 145-156 DOI:10.1016/j.insmatheco.2012.11.007
西安工程大学、中国纺织服装教育学会主办
0

文章信息

陈会, 刘宣会, 张琳.
CHEN Hui, LIU Xuanhui, ZHANG Lin.
一类混合未定权益的套期保值问题
The problem about the hedging strategy of a mix contingent claim
纺织高校基础科学学报, 2016, 29(4): 465-470
Basic Sciences Journal of Textile Universities, 2016, 29(4): 465-470.

文章历史

收稿日期: 2016-04-04

相关文章

工作空间