三角代数上的可导映射对
魏燕, 张建华     
陕西师范大学 数学与信息科学学院, 陕西 西安 710119
摘要: 设$\mathscr{U}$=Tri($\mathscr{A}$$\mathscr{M}$$\mathscr{B}$)是三角代数,$\mathscr{E}$U的标准双边模,且δτ$\mathscr{A}$$\mathscr{E}$是两个映射(无可加或线性假设).利用代数分解方法,证明了三角代数上的可导映射对是可加的.即如果∀ab$\mathscr{U}$,有δab)=δab+b),则δ是由U$\mathscr{E}$的可加广义导子,τ是由U$\mathscr{E}$的可加导子.作为应用,给出了上三角矩阵块代数和套代数上可导映射对的具体表达形式.
关键词三角代数     可导映射对     可加性    
Pairs of derivable maps on triangular algebras
WEI Yan, ZHANG Jianhua     
School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, China
Abstract: Let $\mathscr{U}$=Tri ($\mathscr{A}$, $\mathscr{M}$, $\mathscr{B}$) be a triangular algebras with identity, $\mathscr{E}$ be a standard bi-model of U, and δ, τ:$\mathscr{A}$$\mathscr{E}$ are two maps (without additivity and linear). By using method of algebras decomposition, it is proved that pairs of derivation maps on triangular algebras are additive. That is, if the maps δ, τ satisfies δ(ab)=δ(a)b+(b), for all a, bU, then δ is additive general derivation, and τ is additive derivation from U to $\mathscr{E}$.As an application, the concrete structure of pairs of derivable maps on nest algebras is given.
Key words: triangular algebras     pairs of derivable maps     additivity    
0 引言

近年来, 环或代数上可导映射, Jordan可导映射以及Lie可导映射的研究受到了国内外学者广泛关注[1-5].Daif[1]证明了一类含非平凡幂等元且满足一定条件的环上的可导映射是可加的.Ji[2]得到了一类Jordan代数上的Jordan可导映射是可加的.Lu[3]证明了含非平凡幂等元的素环上的Jordan可导映射是可加的, 并在文献[4]中给出了素环上Lie可导映射的结构表达形式.最近, Liu[5]证明了套代数上的k-Jordan可导映射是可加的.其他相关工作可参见文献[6-17].

δ, τ:$\mathscr{A}$$\mathscr{E}$是两个映射(无可加或线性假设).如果∀a, b$\mathscr{A}$, 有δ(ab)=δ(a)b+(b), 则称(δ, τ) 是$\mathscr{A}$上的可导映射对.类似地, 如果∀a, bA, 分别有δ(ab)=δ(a)○b+aτ(b) 和δ([a, b])=[δ(a), b]+[a, τ(b)], 则分别称(δ, τ) 是$\mathscr{A}$上的Jordan可导映射对和Lie可导映射对.其中ab=ab+baab的Jordan积,[a, b]=ab-baab的Lie积.显然, 当δ=τ时, 可导映射对, Jordan可导映射对和Lie可导映射对(δ, τ) 分别是可导映射, Jordan可导映射和Lie可导映射.本文将研究三角代数上的可导映射对的可加性问题.

$\mathscr{A}$$\mathscr{B}$是可交换环$\mathscr{R}$上含单位元的代数, $\mathscr{M}$是($\mathscr{A}$, $\mathscr{B}$)-忠实双边模.在通常的矩阵运算下, 称

$ {\rm{Tri}}\left( {\mathscr{A},\mathscr{M},\mathscr{B}} \right) = \left\{ {\left[ {\begin{array}{*{20}{c}} A&M\\ 0&B \end{array}} \right]:A \in \mathscr{A},M \in \mathscr{M},B \in \mathscr{B}} \right\} $

$\mathscr{R}$上的三角代数[12].设$\mathscr{U}$=Tri ($\mathscr{A}$, $\mathscr{M}$, $\mathscr{B}$) 是一个三角代数, $\mathscr{E}$U的双边模, 1$\mathscr{A}$和1$\mathscr{B}$分别为$\mathscr{A}$$\mathscr{B}$的单位元.记

$ {p_1} = \left[ {\begin{array}{*{20}{c}} {{1_\mathscr{A}}}&0\\ 0&0 \end{array}} \right],{p_2} = \left[ {\begin{array}{*{20}{c}} 0&0\\ 0&{{1_\mathscr{B}}} \end{array}} \right] $

以及

$ {\mathscr{U}_{ij}} = {p_i}\mathscr{U}{p_j},\;{\mathscr{E} _{ij}} = {p_i}\mathscr{E} {p_j}\left( {1 \le i \le j \le 2} \right). $

显然, $\mathscr{U}$=$\mathscr{U}$11$\mathscr{U}$12$\mathscr{U}$22, $\mathscr{E}$=$\mathscr{E}$11$\mathscr{E}$12$\mathscr{E}$21$\mathscr{E}$22.对a$\mathscr{E}$11, b$\mathscr{E}$22, 如果aU12=0蕴含a=0且U12b=0蕴含b=0, 则称$\mathscr{E}$U的标准双边模.易验证, 三角代数U本身就是U的一个标准双边模.

1 主要结果与证明

定理1  设$\mathscr{U}$=Tri ($\mathscr{A}$, $\mathscr{M}$, $\mathscr{B}$) 是三角代数, $\mathscr{E}$U的标准双边模,则由U$\mathscr{E}$的任一可导映射对(δ, τ) 是可加的.进而, τ是由U$\mathscr{E}$的可加导子, δ是由U$\mathscr{E}$的关于τ的可加广义导子.

以下假设(δ, τ) 为由三角代数U到其标准双边模$\mathscr{E}$的可导映射对.即∀a, b$\mathscr{U}$, 有

$ \delta \left( {ab} \right) = \delta \left( a \right)b + a\tau \left( b \right). $ (1)

下面通过几个引理来完成定理1的证明.

引理1  δ(0)=0.

证明  δ(0)=δ(00)=δ(0)0+0τ(0)=0.证毕.

引理2  pjδ(pi)pj=0, τ(pi)=piδ(pi)pj-pjδ(pj)pi (1≤ij≤2).

证明  在式(1) 中取a=b=pi, 则

$ \delta \left( {{p_i}} \right) = \delta \left( {{p_i}} \right){p_i} + {p_i}\tau \left( {{p_i}} \right). $ (2)

对式(2) 分别左右同乘pj, 右乘pi, 左乘pi右乘pj

$ {p_j}\delta \left( {{p_i}} \right){p_j} = {p_i}\tau \left( {{p_i}} \right){p_i} = 0,{p_i}\tau \left( {{p_i}} \right){p_j} = {p_i}\delta \left( {{p_i}} \right){p_j}. $

在式(1) 中取a=pj, b=pi, 则由引理1得

$ 0 = \delta \left( {{p_j}{p_i}} \right) = \delta \left( {{p_j}} \right){p_i} + {p_j}\tau \left( {{p_i}} \right). $ (3)

对式(3) 分别右乘pj, 左乘pj右乘pi

$ {p_j}\tau \left( {{p_i}} \right){p_j} = 0,\;\;\;{p_j}\tau \left( {{p_i}} \right){p_i} = - {p_j}\delta \left( {{p_j}} \right){p_i}. $

所以

$ \begin{array}{l} \tau \left( {{p_i}} \right) = {p_i}\tau \left( {{p_i}} \right){p_i} + {p_i}\tau \left( {{p_i}} \right){p_j} + {p_j}\tau \left( {{p_i}} \right){p_i} + {p_j}\tau \left( {{p_i}} \right){p_j} = \\ \;\;\;\;\;\;\;\;\;\;\;{p_i}\delta \left( {{p_i}} \right){p_j} - {p_j}\delta \left( {{p_j}} \right){p_i}. \end{array} $

证毕.

r1=p1δ(p1)p1+p2δ(p1)p1+p1δ(p2)p2, r2=p1δ(p1)p2+p2δ(p2)p1+p2δ(p2)p2.定义映射Φ, ψ:U$\mathscr{E}$分别为

$ \mathit{\Phi }\left( a \right) = \delta \left( a \right) - {r_1}a - a{r_2},\;\;\psi \left( a \right) = \tau \left( a \right) + {r_2}\left( a \right) - a{r_2}. $ (4)

引理3  ∀a, b$\mathscr{U}$, 有Φ(ab)=Φ(a)b+(b), 且Φ(pi)=ψ(pi)=0(i=1, 2).

证明   ∀a, b$\mathscr{U}$, 由式(1) 和(4) 式可知

$ \begin{array}{l} \mathit{\Phi }\left( {ab} \right) = \delta \left( {ab} \right) - {r_1}ab - ab{r_2} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\delta \left( a \right)b + a\tau \left( b \right) - {r_1}ab - ab{r_2} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\left( {\mathit{\Phi }\left( a \right) + {r_1}a + a{r_2}} \right)b + a\left( {\psi \left( b \right) - {r_2}b + b{r_2}} \right) - {r_1}ab - ab{r_2} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\mathit{\Phi }\left( a \right)b + a\psi \left( b \right). \end{array} $

即(Φ, ψ) 是U的可导映射对.再由式(4) 和引理2可知

$ \begin{array}{l} \mathit{\Phi }\left( {{p_1}} \right) = \delta \left( {{p_1}} \right) - {r_1}{p_1} - {p_1}{r_2} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\delta \left( {{p_1}} \right) - {p_1}\delta \left( {{p_1}} \right){p_1} - {p_2}\delta \left( {{p_1}} \right){p_1} - {p_1}\delta \left( {{p_1}} \right){p_2} = \\ \;\;\;\;\;\;\;\;\;\;\;\;{p_2}\delta \left( {{p_1}} \right){p_2} = 0. \end{array} $

类似可得Φ(p2)=0及ψ(pi)=0 (i=1, 2).证毕.

以下讨论可导映射对(Φ, ψ) 的可加性.

引理4  设ailUilbikUik (1≤i, l, k≤2).则

(a) ψ(ail + bik) = Φ(ail + bik),

(b) ψ(ail) =Φ(ail) ∈ $\mathscr{E}$il.

证明  (a) 设1≤j≤2且ji.则由引理1和引理3, 得

$ 0 = \mathit{\Phi }\left( {{p_j}\left( {{a_{il}} + {b_{ik}}} \right)} \right) = \mathit{\Phi }\left( {{p_j}} \right)\left( {{a_{il}} + {b_{ik}}} \right) + {p_j}\psi \left( {{a_{il}} + {b_{ik}}} \right) = {p_j}\psi \left( {{a_{il}} + {b_{ik}}} \right), $

$ \mathit{\Phi }\left( {{a_{il}} + {b_{ik}}} \right) = \mathit{\Phi }\left( {{p_i}\left( {{a_{il}} + {b_{ik}}} \right)} \right) = \mathit{\Phi }\left( {{p_i}} \right)\left( {{a_{il}} + {b_{ik}}} \right) + {p_i}\psi \left( {{a_{il}} + {b_{ik}}} \right) = {p_i}\psi \left( {{a_{il}} + {b_{ik}}} \right). $

从而

$ \psi \left( {{a_{il}} + {b_{ik}}} \right) = {p_j}\psi \left( {{a_{il}} + {b_{ik}}} \right) + {p_i}\psi \left( {{a_{il}} + {b_{ik}}} \right) = \mathit{\Phi }\left( {{a_{il}} + {b_{ik}}} \right). $ (5)

(b) 在式(5) 中, 取bik=0, 则由引理3, 得

$ \begin{array}{l} \psi \left( {{a_{il}}} \right) = \mathit{\Phi }\left( {{a_{il}}} \right) = \mathit{\Phi }\left( {{p_i}{a_{il}}{p_l}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\mathit{\Phi }\left( {{p_i}{a_{il}}} \right){p_l} + {p_i}{a_{il}}\psi \left( {{p_l}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\left( {\mathit{\Phi }\left( {{p_l}} \right){a_{il}} + {p_i}\psi \left( {{a_i}j} \right)} \right){p_l} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;{p_i}\psi \left( {{a_{il}}} \right){p_l} \in {\mathscr{E}_{il}}. \end{array} $

证毕.

引理5  设aijUij(1≤ij≤2),则

(a)ψ(a12 + a22) =ψ(a12) +ψ(a22),

(b)ψ(a11 + a22) =ψ(a11) +ψ(a22),

(c)ψ(a11 + a12) =ψ(a11) +ψ(a12).

证明  (a) 由引理4(B) 和引理3, 则

$ \begin{array}{l} \psi \left( {{a_{12}}} \right) = \mathit{\Phi }\left( {{a_{12}}} \right) = \mathit{\Phi }\left( {{p_1}\left( {{a_{12}} + {a_{22}}} \right)} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\mathit{\Phi }\left( {{p_1}} \right)\left( {{a_{12}} + {a_{22}}} \right) + {p_1}\psi \left( {{a_{12}} + {a_{22}}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;{p_1}\psi \left( {{a_{12}} + {a_{22}}} \right), \end{array} $

以及

$ \begin{array}{l} \psi \left( {{a_{22}}} \right) = \mathit{\Phi }\left( {{a_{22}}} \right) = \mathit{\Phi }\left( {{p_2}\left( {{a_{12}} + {a_{22}}} \right)} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\mathit{\Phi }\left( {{p_2}} \right)\left( {{a_{12}} + {a_{22}}} \right) + {p_2}\psi \left( {{a_{12}} + {a_{22}}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;{p_2}\psi \left( {{a_{12}} + {a_{22}}} \right). \end{array} $

从而

$ \psi \left( {{a_{12}} + {a_{22}}} \right) = {p_1}\psi \left( {{a_{12}} + {a_{22}}} \right) + {p_2}\psi \left( {{a_{12}} + {a_{22}}} \right) = \psi \left( {{a_{12}}} \right) + \psi \left( {{a_{22}}} \right). $

类似可得(b) 和(c) 也成立.证毕.

引理6  设a12, b12U12, 则ψ(a12+b12)=ψ(a12)+ψ(b12).

证明  由于a12+b12=(a12+p1)(p2+b12), 从而由引理4和引理5, 得

$ \begin{array}{l} \begin{array}{*{20}{c}} {\psi \left( {{a_{12}} + {b_{12}}} \right) = \mathit{\Phi }\left( {{a_{12}} + {b_{12}}} \right) = \mathit{\Phi }\left( {{a_{12}} + {p_1}} \right)\left( {{p_2} + {b_{12}}} \right) + \left( {{a_{12}} + {p_1}} \right)\psi \left( {{p_2} + {b_{12}}} \right) = }\\ {\psi \left( {{a_{12}} + {p_1}} \right)\left( {{p_2} + {b_{12}}} \right) + \left( {{a_{12}} + {p_1}} \right)\psi \left( {{p_2} + {b_{12}}} \right)} \end{array}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {\psi \left( {{a_{12}}} \right) + \psi \left( {{p_1}} \right)} \right)\left( {{p_2} + {b_{12}}} \right) + \left( {{a_{12}} + {p_1}} \right)\left( {\psi \left( {{p_2}} \right) + \psi \left( {{b_{12}}} \right)} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\psi \left( {{a_{12}}} \right) + \psi \left( {{b_{12}}} \right). \end{array} $

证毕.

引理7  设aii, biiUii (i=1, 2), 则

(a)ψ(a11 +b11) =ψ(a11) +ψ(b11),

(b)ψ(a22 +b22) =ψ(a22) +ψ(b22).

证明  (A) ∀c12U12, 根据引理4和引理6, 则一方面,

$ \begin{array}{l} \psi \left( {{a_{11}}{c_{12}} + {b_{11}}{c_{12}}} \right) = \psi \left( {{a_{11}}{c_{12}}} \right) + \psi \left( {{b_{11}}{c_{12}}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mathit{\Phi }\left( {{a_{11}}{c_{12}}} \right) + \mathit{\Phi }\left( {{b_{11}}{c_{12}}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mathit{\Phi }\left( {{a_{11}}} \right){c_{12}} + {a_{11}}\psi \left( {{c_{12}}} \right) + \;\mathit{\Phi }\left( {{b_{11}}} \right){c_{12}} + {b_{11}}\psi \left( {{c_{12}}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\psi \left( {{a_{11}}} \right){c_{12}} + {a_{11}}\psi \left( {{c_{12}}} \right) + \psi \left( {{b_{11}}} \right){c_{12}} + {b_{11}}\psi \left( {{c_{12}}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {\psi \left( {{a_{11}}} \right) + \psi \left( {{b_{11}}} \right)} \right){c_{12}} + \left( {{a_{11}} + {b_{11}}} \right)\psi \left( {{c_{12}}} \right). \end{array} $ (6)

另一方面,

$ \begin{array}{l} \psi \left( {{a_{11}}{c_{12}} + {b_{11}}{c_{12}}} \right) = \mathit{\Phi }\left( {{a_{11}}{c_{12}} + {b_{11}}{c_{12}}} \right) = \mathit{\Phi }\left( {\left( {{a_{11}} + {b_{11}}} \right){c_{12}}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mathit{\Phi }\left( {{a_{11}} + {b_{11}}} \right){c_{12}} + \left( {{a_{11}} + {b_{11}}} \right)\psi \left( {{c_{12}}} \right){\rm{ = }}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\psi \left( {{a_{11}} + {b_{11}}} \right){c_{12}} + \left( {{a_{11}} + {b_{11}}} \right)\psi \left( {{c_{12}}} \right). \end{array} $ (7)

比较式(6) 与(7), ∀c12U12, 有

$ \left( {\psi \left( {{a_{11}} + {b_{11}}} \right) - \psi \left( {{a_{11}}} \right) - \psi \left( {{b_{11}}} \right)} \right){c_{12}} = 0. $

由于$\mathscr{E}$U的标准双边模, 从而

$ \psi \left( {{a_{11}} + {b_{11}}} \right) = \psi \left( {{a_{11}}} \right) + \psi \left( {{b_{11}}} \right). $

类似可得(B) 也成立.证毕.

引理8  设aijUij (1≤ij≤2), 则ψ(a11+a12+a22)=ψ(a11)+ψ(a12)+ψ(a22).

证明  由引理3和引理4, 则

$ \begin{array}{l} \psi \left( {{a_{11}} + {a_{12}}} \right) = \mathit{\Phi }\left( {{a_{11}} + {a_{12}}} \right) = \mathit{\Phi }\left( {{p_1}\left( {{a_{11}} + {a_{12}} + {a_{22}}} \right)} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mathit{\Phi }\left( {{p_1}} \right)\left( {{a_{11}} + {a_{12}} + {a_{22}}} \right) + {p_1}\psi \left( {{a_{11}} + {a_{12}} + {a_{22}}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{p_1}\psi \left( {{a_{11}} + {a_{12}} + {a_{22}}} \right), \end{array} $ (8)

以及

$ \begin{array}{l} \psi \left( {{a_{22}}} \right) = \mathit{\Phi }\left( {{a_{22}}} \right) = \mathit{\Phi }\left( {{p_2}\left( {{a_{11}} + {a_{12}} + {a_{22}}} \right)} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\mathit{\Phi }\left( {{p_{21}}} \right)\left( {{a_{11}} + {a_{12}} + {a_{22}}} \right) + {p_2}\psi \left( {{a_{11}} + {a_{12}} + {a_{22}}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;{p_2}\psi \left( {{a_{11}} + {a_{12}} + {a_{22}}} \right). \end{array} $ (9)

从而由式(8) 与(9) 及引理5(c), 可得

$ \begin{array}{l} \psi \left( {{a_{11}} + {a_{12}} + {a_{22}}} \right) = {p_1}\psi \left( {{a_{11}} + {a_{12}} + {a_{22}}} \right) + {p_2}\psi \left( {{a_{11}} + {a_{12}} + {a_{22}}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\psi \left( {{a_{11}} + {a_{12}}} \right) + \psi \left( {{a_{22}}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\psi \left( {{a_{11}}} \right) + \psi \left( {{a_{12}}} \right) + \psi \left( {{a_{22}}} \right). \end{array} $

证毕.

引理9   ∀a, bU, 有ψ(a+b)=ψ(a)+ψ(b), 即ψ是可加的.

证明  设a, bU, 则a=a11+a12+a22, b=b11+b12+b22, 其中aij, bijUij(1≤ij≤2).从而由引理6~8可知

$ \begin{array}{l} \psi \left( {a + b} \right) = \psi \left( {{a_{11}} + {b_{11}} + {a_{12}} + {b_{12}} + {a_{22}} + {b_{22}}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\psi \left( {{a_{11}} + {b_{11}}} \right) + \psi \left( {{a_{12}} + {b_{12}}} \right) + \psi \left( {{a_{22}} + {b_{22}}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\psi \left( {{a_{11}}} \right) + \psi \left( {{b_{11}}} \right) + \psi \left( {{a_{12}}} \right) + \psi \left( {{b_{12}}} \right) + \psi \left( {{a_{22}}} \right) + \psi \left( {{b_{22}}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\psi \left( {{a_{11}} + {a_{12}} + {a_{22}}} \right) + \psi \left( {{b_{11}} + {b_{12}} + {b_{22}}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\psi \left( a \right) + \psi \left( b \right). \end{array} $

证毕.

定理1的证明  由式(4) 和引理9可知, τ是可加的.在式(1) 中取a=1, 则∀b$\mathscr{U}$, 有

$ \delta \left( b \right) = \tau \left( b \right) + \delta \left( 1 \right)b. $ (10)

从而δ是可加的.在式(10) 中用ab替代b, 则

$ \begin{array}{l} \tau \left( {ab} \right) = \delta \left( {ab} \right) - \delta \left( 1 \right)ab = \\ \;\;\;\;\;\;\;\;\;\;\;\;\delta \left( a \right)b + a\tau \left( b \right) - \delta \left( 1 \right)ab = \\ \;\;\;\;\;\;\;\;\;\;\;\;\left( {\delta \left( a \right) - \delta \left( 1 \right)a} \right)b + a\tau \left( b \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\tau \left( a \right)b + a\tau \left( b \right). \end{array} $

于是τ是可加导子.再由式(1), 从而δ是关于τ的可加广义导子.证毕.

上三角矩阵块代数和套代数都是特殊的三角代数, 而每一个有限维空间上的非平凡套代数都同构于一个上三角矩阵块代数.所以由定理1和文献[13]可得以下推论.

推论1  设$\mathscr{T}$(R) 是含单位的可交换环R上的上三角矩阵块代数, (δ, τ) 是从$\mathscr{T}$到自身的可导映射对.则存在S, T$\mathscr{T}$(R) 以及可加导子α: RR, 使得∀A$\mathscr{T}$(R), 有δ(A)=AS-TA+Aα, τ(A)=AS-SA+Aα, 其中Aα=(α(aij)).

对于无限维的情况, 由定理1和文献[14]可得以下推论.

推论2  设X是数域F上的无限维Banach空间, $\mathscr{N}$X上含非平凡可补元的套, Alg$\mathscr{N}$是相应的套代数, (δ, τ) 是从Alg$\mathscr{N}$B(X) 的可导映射对.则存在T, S∈Alg$\mathscr{N}$使得∀A∈Alg$\mathscr{N}$, 有δ(A)=AT-SA, τ(A)=AT-TA.

参考文献
[1] DAIF M N. When is a multiplicative derivation additive?[J]. Math Math Sci, 1991, 14(3): 615-618 DOI:10.1155/S0161171291000844
[2] JI Peisheng, LAI Yixin, HOU Enran, et al. Multiplicative Jordan derivation on Jordan algebras[J]. Acta Math Sinica, 2010, 53(3): 571-578
[3] LU Fangyan. Jordan derivable maps of prime rings[J]. Comm Algebra, 2010, 38(12): 4430-4440 DOI:10.1080/00927870903366884
[4] JING Wu, LU Fangyan. Lie derivable mappings on prime rings[J]. Linear Algebra Appl, 2012, 60(2): 167-180
[5] LIU Lei, JI Guoxing. K-Jordan derivable maps on nest algebras[J]. Acta Math Sinica, 2012, 55: 567-576
[6] JING Wu, LU Fangyan. Additivity of Jordan (Triple) derivations on rings[J]. Comm Algebra, 2012, 40(8): 2700-2719 DOI:10.1080/00927872.2011.584927
[7] MARTINDALE W S. When are multiplicative mappings additive?[J]. Proc Amer Math Soc, 1969, 21(3): 695-698 DOI:10.1090/S0002-9939-1969-0240129-7
[8] LU Fangyan. Additivity of Jordan maps on standard operator algebras[J]. Linear Algebra Appl, 2002, 357(1-3): 123-131 DOI:10.1016/S0024-3795(02)00367-1
[9] AN Ruilin, HOU Jinchuan. Additivity of Jordan multiplicative maps on Jordan operator algebras[J]. Taiwanese J Math, 2006, 10(1): 45-64
[10] DU Wei, ZHANG Jianhua. Jordan semi-triple derivable maps of matrix algebras[J]. Acta Math Sinica, 2008, 51: 571-578
[11] LU Fangyan. Multiplicative mappings of operator algebras[J]. Linear Algebra Appl, 2002, 347(1-3): 283-291 DOI:10.1016/S0024-3795(01)00560-2
[12] CHENG W S. Commuting maps of triangular algebras[J]. J London Math Soc, 2001, 63(1): 117-127 DOI:10.1112/(ISSN)1469-7750
[13] COELHO S P, MILIES C P. Derivations of upper triangular matrix rings[J]. Linear Algebra Appl, 1993, 187(93): 263-267
[14] HAN Denggen. Additive derivations of nest algebras[J]. Proc Amer Math Soc, 1993, 119(4): 1165-1169 DOI:10.1090/S0002-9939-1993-1186986-5
[15] LU Fangyan. Additivity of Jordan maps on standard operator algebras[J]. Linear Algebra Appl, 2009, 357(1-3): 123-131
[16] WANG Yang. Additivity of multiplicative maps on triangular rings[J]. Linear Algebra Appl, 2011, 434(3): 615-635 DOI:10.1016/j.laa.2010.09.010
[17] MATHIEU M, VILLENA A R, KU B H. The structure of Lie derivations on C*-algebras[J]. J Funct Anal, 2003, 202(2): 504-525 DOI:10.1016/S0022-1236(03)00077-6
西安工程大学、中国纺织服装教育学会主办
0

文章信息

魏燕, 张建华.
WEI Yan, ZHANG Jianhua.
三角代数上的可导映射对
Pairs of derivable maps on triangular algebras
纺织高校基础科学学报, 2016, 29(4): 455-459
Basic Sciences Journal of Textile Universities, 2016, 29(4): 455-459.

文章历史

收稿日期: 2016-03-21

相关文章

工作空间