耦合非线性波动方程爆破时间的下确界
刘玉龙     
山西大学 数学科学学院, 山西 太原 030006
摘要: 考虑带有阻尼和源项的非线性耦合波动方程,为了获得波动方程爆破时间的下确界,在有限时间爆破的结果下,选择适当辅助函数Gt),利用Cauchy不等式和能量初值E(0)的估计得到有关Gt)和G'(t)的微分不等式,并最终通过对时间积分进而得到非线性耦合波动方程爆破时间的下确界.
关键词耦合     非线性波动方程     爆破     下确界    
Lower bounds for blow-up time of the coupled nonlinear wave equations
LIU Yulong     
School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
Abstract: Considering the coupled nonlinear wave equation, to obtain the lower bounds for wave equations, in case of blow-up result, selecting suitable auxiliary function G(t) and get the differential inequality on G(t) and G'(t) by Cauchy inequality and the estimation of the initial energy E(0).Finally, by integrating over the time, the lower bounds of blow-up time for coupled nonlinear wave equation is obtained.
Key words: coupled     nonlinear wave equation     blow-up     lower bounds    
0 引言

近年来, 对于波动方程解的爆破问题有很多研究, 其中关于非线性耦合波动方程解的存在和爆破问题已有许多结果[1-11].然而, 对于波动方程爆破时间的研究还不是很多.爆破的准确时间一般很难确定, 因此在实践中计算出爆破时间的上、下确界具有重要意义.在关于波动方程爆破问题的文章中, 一般从结果中都可以得到爆破时间的上确界, 而下确界的确定却还没有被普遍关注.文献[12]研究了耦合波动方程, 在适当假设情况下证明了解的爆破, 并且得到了爆破时间的上确界.文献[13]研究了两类非线性波动方程爆破时间的问题, 在解爆破的前提下精确地计算出了爆破时间的下确界.文献[14]利用辅助函数在爆破的前提下得到了爆破时间的下确界.

本文考虑如下的问题

$ \left\{ \begin{array}{l} {u_{tt}} + {u_t} + {\left| {{u_t}} \right|^{m - 1}}{u_t} = {\rm{div}}\left( {{\rho _1}\left( {{{\left| {\nabla u} \right|}^2}} \right)\nabla u} \right) + {f_1}\left( {u,\upsilon } \right),\;\;\;\;\left( {x,t} \right) \in \mathit{\Omega } \times \left( {0,T} \right),\\ {\upsilon _{tt}} + {\upsilon _t} + {\left| {{\upsilon _t}} \right|^{\gamma - 1}}{\upsilon _t} = {\rm{div}}\left( {{\rho _2}\left( {{{\left| {\nabla \upsilon } \right|}^2}} \right)\nabla \upsilon } \right) + {f_2}\left( {u,\upsilon } \right),\;\;\;\left( {x,t} \right) \in \mathit{\Omega } \times \left( {0,T} \right),\\ u = \upsilon = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {x,t} \right) \in \partial \mathit{\Omega } \times \left( {0,T} \right),\\ u\left( {x,0} \right) = {u_0}\left( x \right),u\left( {x,0} \right) = {u_1}\left( x \right),\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega },\\ \upsilon \left( {x,0} \right) = {\upsilon _0}\left( x \right),\upsilon \left( {x,0} \right) = {\upsilon _1}\left( x \right),\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega }\mathit{.} \end{array} \right. $ (1)

其中ΩR2中的有界区域, 且具有光滑边界∂Ω, m, γ≥1, T > 0;文章将在解爆破的前提下得到问题(1) 爆破时间的下确界.

为了获得问题(1) 解的爆破结果, 作如下假设.

(A1) 假设fi(·, ·):R2R2为给定的函数, F(u, v)=a|u+v|p+1+2b ${\left| {uv} \right|^{\frac{{p + 1}}{2}}}$, 其中a, b > 0.且满足当n=2时p≥1, f1(u, v)=$\frac{{\partial F}}{{\partial u}}$, f2(u, v)=$\frac{{\partial F}}{{\partial v}}$.

(A2) 存在正常数c0, c1使得∀(u, v)∈R2F(u, v) 满足

$ {c_0}\left( {{{\left| u \right|}^{p + 1}} + {{\left| \upsilon \right|}^{p + 1}}} \right) \le F\left( {u,\upsilon } \right) \le {c_1}\left( {{{\left| u \right|}^{p + 1}} + {{\left| \upsilon \right|}^{p + 1}}} \right). $ (2)

(A3) 给定函数ρ1, ρ2对所有s > 0满足

$ {\rho _i}\left( s \right) \in {C^1},{\rho _i}\left( s \right) > 0,{\rho _i}\left( s \right) + 2s{{\rho '}_i}\left( s \right) > 0,{\rho _i}\left( s \right) = {b_1} + {b_2}{s^{{q_i}}},{q_i} > 0,{b_1} + {b_2} > 0. $ (3)

文章中记‖·‖pLp(Ω) 的范数, 用E(t) 表示系统(1) 的能量.

1 相关定理及引理

首先给出解的局部存在性定理和解的爆破结果.

定理1[15-16]  假设(A1)~(A3) 成立, 对于任意初值u0W02q1+2(Ω)∩Lp+1(Ω), v0W02q2+2 (Ω)∩Lp+1(Ω) 并且u1, v1L2(Ω), 则问题(1) 存在唯一的局部弱解(u, v): uL([0, T); W02q1+2 (Ω)∩Lp+1(Ω), vL([0, T); W02q2+2 (Ω)∩Lp+1(Ω) utL([0, T); L2(Ω)∩Lm+1(Ω×(0, T)), vtL[0, T); L2(Ω)∩Lr+1(Ω×(0, T)) 其中, T > 0.

定理2[12]  假设(u, v) 时系统(1) 的解, 且满足假设(A1)~(A3).p > max{2q1+1, 2q2+1, m, r}, 初始能量E(0) < 0, 并且存在常数τB使得b1q > $\frac{{B\tau }}{2}$, 其中q=max{q1, q2}, 而且∀uH01(Ω), ‖u2 < B‖∇u2成立.则系统(1) 的解在有限时间T爆破, 且

$ T \le \frac{{1 - \alpha }}{{\gamma \alpha }}{\psi ^{\frac{\alpha }{{\alpha - 1}}}}\left( 0 \right). $

其中, 0 < α < ${\rm{min}}\left\{ {\frac{{p - m}}{{m(p + 1)}},\frac{{p - r}}{{r(p + 1)}}} \right\}$, ψ(t)=(E(t))1-α+ε(∫Ωuutdx+∫Ωvvtdx), ε足够小且γ为常数.

为了获得系统(1) 爆破时间的下确界, 有以下引理.

引理1[14]  假设ΩRn(n=2, 3) 中的有界区域, 且具有光滑边界∂Ω.如果u(x) 在Ω上满足u(x)∈C1而且在∂Ωu(x)=0, 则有不等式

$ \int_\mathit{\Omega } {{u^{2p}}{\rm{d}}x < \delta {{\left( {\int_\mathit{\Omega } {{{\left| {\nabla \upsilon } \right|}^2}{\rm{d}}x} } \right)}^p}} . $

其中:当n=2时, p > 1;当n=3时, 1 < p < $\frac{n}{{n - 2}}$; δ=${\left( {\frac{{n - 1}}{{{n^{3/2}}}}} \right)^{2p}}{\left| \mathit{\Omega} \right|^{1 - \frac{{n{\rm{ }} - 2}}{n}p}}$.

2 主要结果及证明

定理3  假设u(t) 是系统(1) 的解, 且u(t) 在有限时间T爆破, 则

$ T \ge \int_{G\left( 0 \right)}^\infty {\frac{{{\rm{d}}y}}{{\frac{{p + 1}}{2}\delta {{\left( {2{c_2}E\left( 0 \right) + 2{c_2}{c_1}y} \right)}^p} + E\left( 0 \right) + {c_1}y}}} . $

其中

$ G\left( 0 \right) = \int_\mathit{\Omega } {\left( {{{\left| {{u_0}} \right|}^{p + 1}} + {{\left| {{\upsilon _0}} \right|}^{p + 1}}} \right){\rm{d}}x,\delta = {{\left( {\frac{1}{{{2^{3/2}}}}} \right)}^{2p}}\left| \mathit{\Omega } \right|} . $

证明  首先, 对系统(1) 的前两个等式两边分别同乘utvt,并且在Ω上积分,得

$ \int_\mathit{\Omega } {\left( {{u_{tt}}{u_t} + {u_t}{u_t} + {{\left| {{u_t}} \right|}^{m - 1}}{u_t}{u_t}} \right){\rm{d}}x} = \int_\mathit{\Omega } {\left( {{\rm{div}}\left( {{\rho _1}\left( {{{\left| {\nabla u} \right|}^2}} \right)\nabla u} \right){u_t} + {f_1}\left( {u,\upsilon } \right){u_t}} \right){\rm{d}}x} , $ (4)
$ \int_\mathit{\Omega } {\left( {{\upsilon _{tt}}{\upsilon _t} + {\upsilon _t}{\upsilon _t} + {{\left| {{\upsilon _t}} \right|}^{m - 1}}{\upsilon _t}{\upsilon _t}} \right){\rm{d}}x} = \int_\mathit{\Omega } {\left( {{\rm{div}}\left( {{\rho _1}\left( {{{\left| {\nabla \upsilon } \right|}^2}} \right)\nabla \upsilon } \right){\upsilon _t} + {f_1}\left( {u,\upsilon } \right){\upsilon _t}} \right){\rm{d}}x} . $ (5)

则式(4) 等号右边第一项可化简为

$ \begin{array}{*{20}{c}} {\int_\mathit{\Omega } {\left( {{\rm{div}}\left( {{\rho _1}\left( {{{\left| {\nabla u} \right|}^2}} \right)\nabla u} \right){u_t}{\rm{d}}x = } \right.} \int_{\partial \mathit{\Omega }} {{\rho _1}\left( {{{\left| {\nabla u} \right|}^2}} \right)\nabla u \cdot \mathit{\boldsymbol{v}} \cdot {u_t}{\rm{d}}} \mathit{\Gamma } - \int_\mathit{\Omega } {{\rho _1}\left( {{{\left| {\nabla u} \right|}^2}} \right)\nabla u\nabla {u_t}{\rm{d}}x} = }\\ { - \int_\mathit{\Omega } {{\rho _1}\left( {{{\left| {\nabla u} \right|}^2}} \right)\nabla u\nabla {u_t}{\rm{d}}x} .} \end{array} $

其中, ν为边界的外法向量.令Pi=$\int_0^s {{\rho _i}} $(ξ) dξ, s≥0, i=1, 2, 则有

$ \int_\mathit{\Omega } {{\rho _1}\left( {{{\left| {\nabla u} \right|}^2}} \right)\nabla u\nabla {u_t}{\rm{d}}x} = \frac{1}{2}\frac{{\rm{d}}}{{{\rm{d}}t}}\int_\mathit{\Omega } {{P_1}\left( {{{\left| {\nabla u} \right|}^2}} \right){\rm{d}}x} . $

同理,

$ \int_\mathit{\Omega } {{\rho _2}\left( {{{\left| {\nabla u} \right|}^2}} \right)\nabla u\nabla {u_t}{\rm{d}}x} = \frac{1}{2}\frac{{\rm{d}}}{{{\rm{d}}t}}\int_\mathit{\Omega } {{P_2}\left( {{{\left| {\nabla u} \right|}^2}} \right){\rm{d}}x} . $

所以, 式(4)~(5) 可化简为

$ \frac{1}{2}\frac{{\rm{d}}}{{{\rm{d}}t}}\int_\mathit{\Omega } {{{\left| {{u_t}} \right|}^2}{\rm{d}}x} + \int_\mathit{\Omega } {{u_t}{u_t}{\rm{d}}x} + \int_\mathit{\Omega } {{{\left| {{u_t}} \right|}^{m - 1}}{u_t}{u_t}{\rm{d}}x} = - \frac{1}{2}\frac{{\rm{d}}}{{{\rm{d}}t}}\int_\mathit{\Omega } {{P_1}\left( {{{\left| {\nabla u} \right|}^2}} \right){\rm{d}}x} + \int_\mathit{\Omega } {\frac{{\partial F}}{{\partial u}}{u_t}{\rm{d}}x} , $ (6)
$ \frac{1}{2}\frac{{\rm{d}}}{{{\rm{d}}t}}\int_\mathit{\Omega } {{{\left| {{\upsilon _t}} \right|}^2}{\rm{d}}x} + \int_\mathit{\Omega } {{\upsilon _t}{\upsilon _t}{\rm{d}}x} + \int_\mathit{\Omega } {{{\left| {{\upsilon _t}} \right|}^{\gamma - 1}}{\upsilon _t}{\upsilon _t}{\rm{d}}x} = - \frac{1}{2}\frac{{\rm{d}}}{{{\rm{d}}t}}\int_\mathit{\Omega } {{P_1}\left( {{{\left| {\nabla \upsilon } \right|}^2}} \right){\rm{d}}x} + \int_\mathit{\Omega } {\frac{{\partial F}}{{\partial \upsilon }}{\upsilon _t}{\rm{d}}x} . $ (7)

将式(6) 与式(7) 相加, 整理可得

$ \begin{array}{l} \frac{{\rm{d}}}{{{\rm{d}}t}}\left( {\frac{1}{2}\left\| {{u_t}} \right\|_2^2 + \frac{1}{2}\left\| {{\upsilon _t}} \right\|_2^2 + \frac{1}{2}\int_\mathit{\Omega } {\left( {{P_1}\left( {{{\left| {\nabla u} \right|}^2}} \right) + {P_2}\left( {{{\left| {\nabla \upsilon } \right|}^2}} \right)} \right){\rm{d}}x} - \int_\mathit{\Omega } {F\left( {u,\upsilon } \right){\rm{d}}x} } \right) = \\ - \int_\mathit{\Omega } {{u_t}{u_t}{\rm{d}}x} - \int_\mathit{\Omega } {{{\left| {{u_t}} \right|}^{m - 1}}{u_t}{u_t}{\rm{d}}x} - \int_\mathit{\Omega } {{\upsilon _t}{\upsilon _t}{\rm{d}}x} + \int_\mathit{\Omega } {{{\left| {{\upsilon _t}} \right|}^{\gamma - 1}}{\upsilon _t}{\upsilon _t}{\rm{d}}x} . \end{array} $

所以可以得到能量及其导数的表达式, 即

$ E\left( t \right) = \frac{1}{2}\left( {\left\| {{u_t}} \right\|_2^2 + \left\| {{\upsilon _t}} \right\|_2^2} \right) + \frac{1}{2}\int_\mathit{\Omega } {\left( {{P_1}\left( {{{\left| {\nabla u} \right|}^2}} \right) + {P_2}\left( {{{\left| {\nabla \upsilon } \right|}^2}} \right)} \right){\rm{d}}x} - \int_\mathit{\Omega } {F\left( {u,\upsilon } \right){\rm{d}}x} , $ (8)
$ \frac{{{\rm{d}}E\left( t \right)}}{{{\rm{d}}t}} = E'\left( t \right) = - \int_\mathit{\Omega } {{u_t}{u_t}{\rm{d}}x} - \int_\mathit{\Omega } {{{\left| {{u_t}} \right|}^{m - 1}}{u_t}{u_t}{\rm{d}}x} - \int_\mathit{\Omega } {{\upsilon _t}{\upsilon _t}{\rm{d}}x} + \int_\mathit{\Omega } {{{\left| {{\upsilon _t}} \right|}^{\gamma - 1}}{\upsilon _t}{\upsilon _t}{\rm{d}}x} . $ (9)

由式(9) 得

$ \frac{{{\rm{d}}E\left( t \right)}}{{{\rm{d}}t}} < 0, $

$ E\left( t \right) \le E\left( 0 \right). $ (10)

所以由式(8) 和式(10) 可得

$ E\left( 0 \right) + \int_\mathit{\Omega } {F\left( {u,\upsilon } \right){\rm{d}}x} \ge \frac{1}{2}\left( {\left\| {{u_t}} \right\|_2^2 + \left\| {{\upsilon _t}} \right\|_2^2} \right) + \frac{1}{2}\int_\mathit{\Omega } {\left( {{P_1}\left( {{{\left| {\nabla u} \right|}^2}} \right) + {P_2}\left( {{{\left| {\nabla \upsilon } \right|}^2}} \right)} \right){\rm{d}}x} . $ (11)

接下来设辅助函数为

$ G\left( t \right) = \int_\mathit{\Omega } {\left( {{{\left| u \right|}^{p + 1}} + {{\left| \upsilon \right|}^{p + 1}}} \right){\rm{d}}x} , $

则关于t求导可得

$ G'\left( t \right) = \left( {p + 1} \right)\int_\mathit{\Omega } {\left( {{{\left| u \right|}^p}{u_t} + {{\left| \upsilon \right|}^p}{\upsilon _t}} \right){\rm{d}}x} . $

利用Cauchy不等式得

$ G'\left( t \right) \le \frac{{\left( {p + 1} \right)}}{2}\left( {\int_\mathit{\Omega } {{{\left| u \right|}^{2p}}{\rm{d}}x} + \int_\mathit{\Omega } {{{\left| {{u_t}} \right|}^2}{\rm{d}}x} + \int_\mathit{\Omega } {{{\left| \upsilon \right|}^{2p}}{\rm{d}}x} + \int_\mathit{\Omega } {{{\left| {{\upsilon _t}} \right|}^2}{\rm{d}}x} } \right). $

由式(11) 可得

$ G'\left( t \right) \le \frac{{\left( {p + 1} \right)}}{2}\left( {\int_\mathit{\Omega } {{{\left| u \right|}^{2p}}{\rm{d}}x} + \int_\mathit{\Omega } {{{\left| \upsilon \right|}^{2p}}{\rm{d}}x} } \right) + E\left( 0 \right) + \int_\mathit{\Omega } {F\left( {u,\upsilon } \right){\rm{d}}x} . $

再利用引理1可得

$ \begin{array}{*{20}{c}} {G'\left( t \right) \le \frac{{\left( {p + 1} \right)}}{2}\delta \left( {{{\left( {\int_\mathit{\Omega } {{{\left| {\nabla u} \right|}^2}} {\rm{d}}x} \right)}^p} + {{\left( {\int_\mathit{\Omega } {{{\left| {\nabla \upsilon } \right|}^2}} {\rm{d}}x} \right)}^p} + E\left( 0 \right) + \int_\mathit{\Omega } {F\left( {u,\upsilon } \right){\rm{d}}x} \le } \right.}\\ {\frac{{\left( {p + 1} \right)}}{2}\delta {{\left( {\int_\mathit{\Omega } {{{\left| {\nabla u} \right|}^2}} {\rm{d}}x + \int_\mathit{\Omega } {{{\left| {\nabla \upsilon } \right|}^2}} {\rm{d}}x} \right)}^p} + E\left( 0 \right) + \int_\mathit{\Omega } {F\left( {u,\upsilon } \right){\rm{d}}x} .} \end{array} $ (12)

由式(3) 可知, 存在一个常数c2使得

$ {c_2}\int_0^s {{\rho _i}\left( \xi \right){\rm{d}}\xi } \ge s $

成立,即

$ {c_2}{P_i}\left( s \right) \ge s, $

所以有

$ {c_2}{P_1}\left( {{{\left| {\nabla u} \right|}^2}} \right) \ge {\left| {\nabla u} \right|^2},{c_2}{P_2}\left( {{{\left| {\nabla \upsilon } \right|}^2}} \right) \ge {\left| {\nabla \upsilon } \right|^2}. $ (13)

将式(13) 代入式(12) 可得

$ G'\left( t \right) \le \frac{{\left( {p + 1} \right)}}{2}\delta {\left( {\int_\mathit{\Omega } {{c_2}{P_1}\left( {{{\left| {\nabla u} \right|}^2}} \right){\rm{d}}x} + \int_\mathit{\Omega } {{c_2}{P_2}\left( {{{\left| {\nabla \upsilon } \right|}^2}} \right){\rm{d}}\upsilon } } \right)^p} + E\left( 0 \right) + \int_\mathit{\Omega } {F\left( {u,\upsilon } \right){\rm{d}}x} . $

再由式(11) 可得

$ G'\left( t \right) \le \frac{{\left( {p + 1} \right)}}{2}\delta {\left( {2{c_2}E\left( 0 \right) + 2{c_2}\int_\mathit{\Omega } {F\left( {u,\upsilon } \right){\rm{d}}x} } \right)^p} + E\left( 0 \right) + \int_\mathit{\Omega } {F\left( {u,\upsilon } \right){\rm{d}}x} . $

根据式(2) 可以得到

$ \begin{array}{l} G'\left( t \right) \le \frac{{\left( {p + 1} \right)}}{2}\delta {\left( {2{c_2}E\left( 0 \right) + 2{c_2}{c_1}\left( {{{\left| u \right|}^{p + 1}} + {{\left| \upsilon \right|}^{p + 1}}} \right)} \right)^p} + E\left( 0 \right) + {c_1}\left( {{{\left| u \right|}^{p + 1}} + {{\left| \upsilon \right|}^{p + 1}}} \right) \le \\ \;\;\;\;\;\;\;\;\;\;\;\frac{{\left( {p + 1} \right)}}{2}\delta {\left( {2{c_2}E\left( 0 \right) + 2{c_2}{c_1}G\left( t \right)} \right)^p} + E\left( 0 \right) + {c_1}G\left( t \right). \end{array} $ (14)

因为$\mathop {{\rm{lim}}}\limits_{t \to T^- } $G(t)=∞, 所以由式(14) 可以得到

$ T \ge \int_{G\left( 0 \right)}^\infty {\frac{{{\rm{d}}y}}{{\frac{{p + 1}}{2}\delta {{\left( {2{c_2}E\left( 0 \right) + 2{c_2}{c_1}y} \right)}^p} + E\left( 0 \right) + {c_1}y}}} . $

证毕.

3 结束语

计算波动方程解爆破时间的下确界的关键是G(t) 的选取以及得到最终的微分不等式.而且G(t) 一定要是非线性的, 否则会与前面的爆破结果相矛盾, 而利用引理中的方法就可保证G(t) 非线性.本文尽可能使得爆破时间的下确界更精确, 但由于技术和方法的局限, 求解爆破时间的更为精确的方法还有待进一步研究.

参考文献
[1] GLASSEY R T. Blow-up theorems for nonlinear wave equations[J]. Math Zeit, 1973, 132(3): 183-203 DOI:10.1007/BF01213863
[2] PITTS D R, RAMMAHA M A. Global existence and non-existence theorems for nonlinear wave equations[J]. Indiana Univ Math J, 2002, 51(6): 1479-1509 DOI:10.1512/iumj.2002.51.2215
[3] LEVINE H A, TODOROVA G. Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy[J]. Proc Amer Math Soc, 2001, 129(3): 793-805 DOI:10.1090/S0002-9939-00-05743-9
[4] TODOROVA G, VITILLARO E. Blow-up for nonlinear dissipative wave equations in Rn[J]. J Math Anal Appl, 2005, 303(1): 242-257 DOI:10.1016/j.jmaa.2004.08.039
[5] SONG H T, XUE D H. Blow up in a nonlinear viscoelastic wave equation with strong damping[J]. Nonlinear Anal, 2014, 109: 245-251 DOI:10.1016/j.na.2014.06.012
[6] ZHOU J. Global existence and blow-up of solutions for a Kirchhoff type plate equation with damping[J]. Appl Math Computation, 2015, 265(c): 807-818
[7] MESSAOUDI S A. Blow up and global existence in a nonlinear viscoelastic wave equation[J]. Math Nachr, 2003, 260(1): 58-66 DOI:10.1002/(ISSN)1522-2616
[8] MESSAOUDI S A. Blow up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation[J]. J Math Anal Appl, 2006, 320(2): 902-915 DOI:10.1016/j.jmaa.2005.07.022
[9] MESSAOUDI S A. Blow up in a nonlinearly damped wave equation[J]. Math Nachr, 2001, 231(1): 1-7
[10] LIU W J. General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source[J]. Nonlinear Anal, 2010, 73: 1890-1904 DOI:10.1016/j.na.2010.05.023
[11] BALL J. Remarks on blow up and nonexistence theorems for nonlinear evolutions equations[J]. Quart J Math Oxford, 1977, 28(4): 473-486 DOI:10.1093/qmath/28.4.473
[12] WU J, LI S. Blow-up for coupled nonlinear wave equations with damping and source[J]. Appl Math Lett, 2011, 24(7): 1093-1098 DOI:10.1016/j.aml.2011.01.030
[13] ZHOU J. Lower bounds for blow-up time of two nonlinear wave equation[J]. Appl Math Lett, 2015, 45: 64-68 DOI:10.1016/j.aml.2015.01.010
[14] PHILIPPIN G A. Lower bounds for blow-up time in a class of nonlinear wave equation[J]. Z Angew Math Phys, 2015, 66(1): 129-134 DOI:10.1007/s00033-014-0400-2
[15] GEORGIEV V, TODOROVA G. Existence of the wave equation with nonlinear damping and source term[J]. J Differential Equations, 1994, 109(2): 295-308 DOI:10.1006/jdeq.1994.1051
[16] CAVALCANTI M M, DOMINTI V N, FERRERIA J. Existence and uniform decay for nonlinear viscoelastic equation with strong damping[J]. Math Methods Appl Sci, 2001, 24: 1043-1053 DOI:10.1002/(ISSN)1099-1476
西安工程大学、中国纺织服装教育学会主办
0

文章信息

刘玉龙.
LIU Yulong.
耦合非线性波动方程爆破时间的下确界
Lower bounds for blow-up time of the coupled nonlinear wave equations
纺织高校基础科学学报, 2016, 29(4): 450-454
Basic Sciences Journal of Textile Universities, 2016, 29(4): 450-454.

文章历史

收稿日期: 2016-04-27

相关文章

工作空间