一类具有交叉扩散项的捕食-食饵模型的局部分歧
容跃堂, 董苗娜, 何堤, 王晓丽     
西安工程大学 理学院, 陕西 西安 710048
摘要: 研究一类带有交叉扩散项的捕食-食饵模型在齐次Dirichlet边界条件下分歧解的存在性.利用极大值原理和上下解法得到正解的先验估计,并借助Crandall-Rabinowitz分歧理论,得出局部分歧正解存在的充分条件.
关键词捕食-食饵     自扩散     交叉扩散     先验估计     局部分歧    
The local bifurcation for a kind of prey-predator model with cross-diffusion
RONG Yuetang, DONG Miaona, HE Di, WANG Xiaoli     
School of Science, Xi'an Polytechnic University, Xi'an 710048, China
Abstract: The existence of bifurcation solutions for a predator-prey model with cross-diffusion under homogeneous Dirichlet boundary conditions is concerned. By the maximum principle, a priori estimate of positive solutions are obtained. Then by Crandall-Rabinowitz bifurcation theory, the sufficient conditions for the existence of positive solutions to a local bifurcation is proved.
Key words: predator-prey model     self-diffusion     cross-diffusion     priori estimate     local bifurcation    
0 引言

近年来, 关于生物数学领域的捕食食饵模型的研究已经成为热点, 尤其是对于种群扩散影响下的捕食模型, 国内外学者均已取得了一些符合实际的研究成果.文献[1]研究了一类捕食模型的正常数平衡态解的稳定性及分歧; 文献[2-3]利用极大值原理和分歧定理研究了一类捕食模型局部解的延拓; 文献[4-7]利用分歧定理研究了模型在交叉扩散影响下的正解的存在性问题.在文献[8]中, 作者提出了一类具有扩散项的捕食食饵模型, 通过给出正解的先验估计及局部分歧解存在条件, 进而得到该系统平衡态的全局分歧解及其走向; 文献[9]则在上述基础上研究了该类模型在交叉扩散项影响下的分歧.

在同时考虑交叉扩散和自扩散项时,本文将继续研究如下捕食-食饵模型在齐次Dirichlet边界条件下正解的存在性,即

$ \left\{ \begin{array}{l} {u_t} - \Delta \left[ {\left( {1 + {m_1}u + {m_2}\upsilon } \right)u} \right] = \left( {a - u - \frac{{b\upsilon }}{{\left( {1 + au} \right)\left( {1 + \beta u} \right)}}} \right)u,\;\;\;\;x \in \mathit{\Omega ,t > }0\mathit{,}\\ {\upsilon _t} - \Delta \left[ {\left( {1 + {m_3}\upsilon + {m_4}u} \right)\upsilon } \right] = \left( {c - \upsilon + \frac{{du}}{{\left( {1 + \alpha u} \right)\left( {1 + \beta \upsilon } \right)}}} \right)\upsilon ,\;\;\;x \in \mathit{\Omega ,t > }0\mathit{,}\\ u = \upsilon = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega ,t > }0\mathit{,}\\ u\left( {x,0} \right) = {u_0}\left( x \right) \ge 0,\upsilon \left( {x,0} \right) = {\upsilon _0}\left( x \right) \ge 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega }. \end{array} \right. $ (1)

其中:ΩRN中具有光滑边界∂Ω上的有界区域; u, v分别表示食饵和捕食者的种群密度; a, b, c, d, α, β都是正常数, m1, m3表示自扩散系数; m2, m4表示交叉扩散系数, 反应函数$\frac{{uv}}{{(1 + \alpha u)(1 + \beta v)}}$是Bazykin研究捕食者的饱和不稳定性与食饵的稳定性时建立的功能反应函数, 生物背景参见文献[10].

本文将针对模型(1) 的如下平衡态方程展开讨论.

$ \left\{ \begin{array}{l} - \Delta \left[ {\left( {1 + {m_1}u + {m_2}\upsilon } \right)u} \right] = \left( {a - u - \frac{{b\upsilon }}{{\left( {1 + au} \right)\left( {1 + \beta \upsilon } \right)}}} \right)u,\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ - \Delta \left[ {\left( {1 + {m_3}\upsilon + {m_4}u} \right)\upsilon } \right] = \left( {c - \upsilon + \frac{{du}}{{\left( {1 + \alpha u} \right)\left( {1 + \beta \upsilon } \right)}}} \right)\upsilon ,\;\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ u = \upsilon = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }. \end{array} \right. $ (2)

:对于问题(2) 的解(u, v), 如果在Ω中, (u, v) 中只有一个分量为0, 则称其为半平凡解.

1 预备知识

C01 (Ω)={uC1(Ω):u|∂Ω=0}.定义C01 (Ω) 中的范数为通常的Banach空间C1 (Ω) 中的范数, 令X=C01 (ΩC01 (Ω), 则X是Banach空间.

首先, 考虑特征值问题

$ \left\{ \begin{array}{l} - p\Delta \varphi + q\left( x \right)\varphi = \lambda \varphi ,\;\;\;\;\;x \in \mathit{\Omega },\\ \varphi = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }\mathit{.} \end{array} \right. $ (3)

引理1[11]  假设q(x)∈C(E), p为常数, 则问题(3) 的所有特征值满足λ1(p, q) < λ2(p, q)≤λ3(p, q)≤…→∞, 相应的特征函数为φ1, φ2, ….由文献[11]知λ1(p, q) 是简单的且关于q(x) 严格单调递增.为方便起见, 简记λ1=λ1(0), 相应的主特征函数φ1 > 0.

再考虑边值问题

$ \left\{ \begin{array}{l} \Delta \left[ {\left( {1 + {m_1}u} \right)u} \right] + u\left( {a - bu} \right) = 0,\;\;\;\;\;\;x \in \mathit{\Omega },\\ u\left( x \right) = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }. \end{array} \right. $ (4)
$ \left\{ \begin{array}{l} \Delta \left[ {\left( {1 + {m_3}\upsilon } \right)\upsilon } \right] + \upsilon \left( {a - d\upsilon } \right) = 0,\;\;\;\;\;\;x \in \mathit{\Omega },\\ \upsilon \left( x \right) = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }. \end{array} \right. $ (5)

引理2[11]  (1) 如果aλ1, 则u=0是问题(4) 的唯一非负解; 若a > λ1, 则问题(4) 的唯一正解为θa.

(2) 如果cλ1, 则v=0是问题(5) 的唯一非负解; 当c > λ1时, 其存在唯一正解θc.因此, 当a > λ1, 问题(2) 存在半平凡解(θa, 0);当c > λ1, 问题(2) 存在半平凡解(0, θc).

定义Z=(U, V), 其中U=(1+m1u+m2v)u, V=(1+m3v+m4u)v, 则

$ \frac{{\partial \left( {U,V} \right)}}{{\partial \left( {u,\upsilon } \right)}} = \left( {1 + 2{m_1}u + {m_2}\upsilon } \right)\left( {1 + 2{m_3}u + {m_4}\upsilon } \right) - {m_2}u \cdot {m_4}\upsilon \ge 1 > 0. $

即(u, v)≥0与(U, V)≥0之间存在一一对应的关系.现在, 引入和问题(2) 等价的半线性椭圆系统

$ \left\{ \begin{array}{l} - \Delta U = \left( {a - u - \frac{{b\upsilon }}{{\left( {1 + \alpha u} \right)\left( {1 + \beta \upsilon } \right)}}} \right)u,\;\;\;\;\;x \in \mathit{\Omega ,}\\ - \Delta V = \left( {c - \upsilon - \frac{{du}}{{\left( {1 + \alpha u} \right)\left( {1 + \beta \upsilon } \right)}}} \right)\upsilon ,\;\;\;\;\;x \in \mathit{\Omega ,}\\ U = V = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }\mathit{.} \end{array} \right. $ (6)

易知, 当a, c > λ1时, 问题(6) 的两个半平凡解分别为($\overline {{\theta _a}} $, 0), (0, $\overline {{\theta _c}} $), 其中

$ {{\bar \theta }_a} = \left( {1 + {m_1}{\theta _a}} \right){\theta _a},{{\bar \theta }_c} = \left( {1 + {m_3}{\theta _c}} \right){\theta _c}. $

引理3[12]  假设a > λ1, 令L(a)=-Δ $ - \frac{{a - 2{\theta _a}}}{{1 + 2{m_1}{\theta _a}}}$, 则L(a) 的特征值均大于0.

引理4  设c > λ1, 则当cm4 > d时, 存在唯一的a=a*(c)∈(λ1, ∞), 满足${\lambda _1}\left( { - \frac{{c + \left( {c\alpha + d} \right){\theta _a}}}{{(1 + {m_4}{\theta _a})(1 + \alpha {\theta _a})}}} \right) = 0$, 且a=a*(c) 关于c严格单调递增.此外, ∃ψ*≥0满足

$ \left\{ \begin{array}{l} - \Delta {\psi ^ * } - \frac{{c + \left( {ac + d} \right){\theta _a}}}{{\left( {1 + \alpha {\theta _a}} \right)\left( {1 + {m_4}{\theta _a}} \right)}}{\psi ^ * } = 0,{\psi ^ * } > 0,\;\;\;\;\;x \in \mathit{\Omega },\\ {\psi ^ * } = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }. \end{array} \right. $

证明  取A(a, c)=${\lambda _1}\left( { - \frac{{c + \left( {c\alpha + d} \right){\theta _a}}}{{(1 + {m_4}{\theta _a})(1 + \alpha {\theta _a})}}} \right)$.显然A(λ1, c)=λ1(-c)=λ1-c < 0.由于当a→∞时θa→∞, 故有$\mathop {{\rm{lim}}}\limits_{a \to \infty } $A(a, c)=λ1(0)=λ1 > 0.经计算得

$ \frac{\partial }{{\partial a}}\left( { - \frac{{c + \left( {c\alpha + d} \right){\theta _a}}}{{\left( {1 + {m_4}{\theta _a}} \right)\left( {1 + \alpha {\theta _a}} \right)}}} \right) = \left( {\frac{{\left( {c\alpha + d} \right)\alpha {m_4}\theta _a^2 + 2c\alpha {m_4}{\theta _a} + c{m_4} - d}}{{{{\left( {1 + {m_4}{\theta _a}} \right)}^2}{{\left( {1 + \alpha {\theta _a}} \right)}^2}}}} \right)\frac{{\partial {\theta _a}}}{{\partial a}}. $

又因为qλ1(q):C(E)→Raθa:[λ1, ∞)→C2(Ω)∩C0(E) 均严格单调递增, 可知A(a, c) 关于a严格单调递增.从而存在唯一的a=a*(c) > λ1, 使得A(a*(c), c)=0.

再对A(a*(c), c)=0两边关于c求导, 得Aa(a*(c), ca*′(c)+Ac(a*(c), c)=0.由于Ac(a, c) < 0, 结合Aa(a, c) > 0得知a*′(c) > 0, 即a=a*(c) 关于c严格单调递增.

类似可以证明以下引理.

引理5  假设c > λ1, 则当 > b时, 就存在唯一的a=a*(c)∈(λ1, ∞), 满足${\lambda _1}\left( { - \frac{{a + \left( {\alpha \beta - b} \right){\theta _c}}}{{(1 + \beta {\theta _c})(1 + {m_2}{\theta _c})}}} \right) = 0$, 且a=a*(c) 关于c严格单调递增.此外, ∃φ*≥0满足

$ \left\{ \begin{array}{l} - \Delta {\phi _ * } - \frac{{a + \left( {a\beta - b} \right){\theta _c}}}{{\left( {1 + \beta {\theta _c}} \right)\left( {1 + {m_2}{\theta _c}} \right)}}{\phi _ * } = 0,{\phi _ * } > 0,\;\;\;\;\;\;x \in \mathit{\Omega },\\ {\phi _ * } = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega }\mathit{.} \end{array} \right. $
2 正解的先验估计

现在, 结合文献[12-13]中的方法给出系统(6) 的正解存在的必要条件及先验估计.

定理1  当aλ1, 或者c+$\frac{d}{\alpha }$λ1, 则问题(6) 没有正解.

证明  若问题(6) 存在正解(U, V), 由问题(6) 中的第2个方程得

$ - \Delta V = \frac{V}{{1 + {m_3}\upsilon + {m_4}u}}\left( {c - \upsilon + \frac{{du}}{{\left( {1 + \alpha u} \right)\left( {1 + \beta \upsilon } \right)}}} \right) < \frac{V}{{1 + {m_3}\upsilon + {m_4}u}}\left( {c + \frac{d}{\alpha }} \right) < \left( {c + \frac{d}{\alpha }} \right)V, $

两边同乘以V, 分部积分得

$ \int_\mathit{\Omega } {{{\left| {\nabla V} \right|}^2}{\rm{d}}x = \left\| {\nabla V} \right\|_2^2 < \left( {c + \frac{d}{\alpha }} \right)} \left\| V \right\|_2^2, $

由Poincare不等式‖∇V22λ1V22,可得c+ $ \frac{d}{\alpha }$ > λ1, 同理可证a > λ1.与已知条件矛盾, 则定理1得证.

定理2  设a > λ1, c+ $\frac{d}{\alpha }$ > λ1b-βa(1+αa) > 0.若(U, V) 是问题(6) 的任意正解, 则∀xΩ, 有

$ \begin{array}{*{20}{c}} {0 < u\left( x \right) <U\left( x \right) < M\left( a \right) = \left[ {1 + {m_1}a + \frac{{{m_2}a\left( {1 + \alpha a} \right)}}{{b - \beta a\left( {1 + \alpha a} \right)}}} \right]a,}\\ {0 < \upsilon \left( x \right) < V\left( x \right)\left[ {1 + {m_3}\left( {c + \frac{{dM\left( a \right)}}{{1 + \alpha M\left( a \right)}}} \right) + {m_4}M\left( a \right)} \right]\left( {c + \frac{{dM\left( a \right)}}{{1 + \alpha M\left( a \right)}}} \right).} \end{array} $

证明  设∃x0∈Ω, 使得U(x0)=$\mathop {{\rm{max}}}\limits_{x \in \Omega } $U(x).由于

$ 0 \le - \Delta U\left( {{x_0}} \right) = u\left( {{x_0}} \right)\left( {a - u\left( {{x_0}} \right) - \frac{{b\upsilon \left( {{x_0}} \right)}}{{\left[ {1 + \alpha u\left( {{x_0}} \right)} \right]\left[ {1 + \beta \upsilon \left( {{x_0}} \right)} \right]}}} \right), $

故有u(x0) < a, $\frac{{bv({x_0})}}{{\left[ {1 + \alpha u\left( {{x_0}} \right)} \right]\left[ {1 + \beta v\left( {{x_0}} \right)} \right]}} < a$, 则

$ U\left( x \right) \le U\left( {{x_0}} \right) = \left[ {1 + {m_1}u\left( {{x_0}} \right) + {m_2}\upsilon \left( {{x_0}} \right)} \right]u\left( {{x_0}} \right) < \left[ {1 + {m_1}a + \frac{{{m_2}a\left( {1 + \alpha a} \right)}}{{b - \beta a\left( {1 + \alpha a} \right)}}} \right]a. $

同理可得

$ V\left( x \right) < \left[ {1 + {m_3}\left( {c + \frac{{dM\left( a \right)}}{{1 + \alpha M\left( a \right)}}} \right) + {m_4}M\left( a \right)} \right]\left( {c + \frac{{dM\left( a \right)}}{{1 + \alpha M\left( a \right)}}} \right), $

由(u, v) 与(U, V) 之间的关系知定理2成立.

3 分歧正解的存在性

现在以a为分歧参数, 参考文献[14-19], 利用Crandall-Rabinowitz局部分歧定理, 给出问题(6) 发自半平凡解($\overline {{\theta _a}} $, 0) 与(0, $\overline {{\theta _c}} $) 的局部分歧正解的存在性.

定理3  设a > λ1, c+ $\frac{d}{\alpha }$ > λ1cm4 > d, 则(a*; $\overline {{\theta _{a*}}} $, 0)∈X×R+为问题(6) 的分歧点, 且(a*; $\overline {{\theta _{a*}}} $, 0) 的领域内存在正解

$ \mathit {\Gamma} * = \{ (a(s);{\theta _{a*}} + s({\phi ^*} + {\mathit{\Phi} _1}(s)),s({\psi ^*} + {\mathit{\Psi} _1}(s))):0 < s < \delta \} . $

其中a*${\lambda _1}\left( { - \frac{{c + \left( {c\alpha + d} \right){\theta _a}}}{{(1 + {m_4}{\theta _a})(1 + \alpha {\theta _a})}}} \right) = 0$唯一确定, ψ* > 0满足

$ - \Delta {\psi ^ * } - \frac{{c + \left( {c\alpha + d} \right){\theta _a}}}{{\left( {1 + {m_4}{\theta _a}} \right)\left( {1 + \alpha {\theta _a}} \right)}}{\psi ^ * } = 0,x \in \mathit{\Omega ,} $

ψ*=0, x∂Ω, ∫Ωψ*2dx=1, φ*C01 (Ω), δ > 0充分小.这里(a(s); Φ1(s), Ψ1(s)) 是C1连续函数, 满足a(0)=a*, Φ1(0)=0, Ψ1(0)=0, ∫Ωψ1φ*dx=0, 且

$ {\phi ^*} = L_{{a^ * }}^{ - 1}\left[ { - \frac{{{m_2}{\theta _{{a^ * }}}\left( {{a^ * } - 2{\theta _{{a^ * }}}} \right)\left( {1 + \alpha {\theta _{{a^ * }}}} \right) + b{\theta _{{a^ * }}}\left( {1 + 2{m_1}{\theta _{{a^ * }}}} \right)}}{{\left( {1 + 2{m_1}{\theta _{{a^ * }}}} \right)\left( {1 + {m_4}{\theta _{{a^ * }}}} \right)\left( {1 + \alpha {\theta _{{a^ * }}}} \right)}}} \right]. $

证明令

$ f\left( {u,\upsilon } \right) = \left( {a - u - \frac{{b\upsilon }}{{\left( {1 + \alpha u} \right)\left( {1 + \beta \upsilon } \right)}}} \right)u,g\left( {u,\upsilon } \right) = \left( {c - \upsilon + \frac{{du}}{{\left( {1 + \alpha u} \right)\left( {1 + \beta \upsilon } \right)}}} \right)\upsilon , $

其中u, v均为(U, V) 的函数.将问题(6) 在(U, V)=($\overline {{\theta _a}} $, 0) 处Taylor展开为

$ \left( {\begin{array}{*{20}{c}} {\Delta U}\\ {\Delta V} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} {f\left( {\overline {{\theta _a}} ,0} \right)}\\ {g\left( {\overline {{\theta _a}} ,0} \right)} \end{array}} \right) + \left[ {\left( {\begin{array}{*{20}{c}} {{f_u}}&{{f_\upsilon }}\\ {{g_u}}&{{g_\upsilon }} \end{array}} \right) \cdot \left( {\begin{array}{*{20}{c}} {{u_U}}&{{u_V}}\\ {{\upsilon _U}}&{{\upsilon _V}} \end{array}} \right)} \right]\left| {_{\left( {{\theta _a},0} \right)}} \right. \cdot \left( {\begin{array}{*{20}{c}} {U - \overline {{\theta _a}} }\\ V \end{array}} \right) + \\ \left( {\begin{array}{*{20}{c}} {{F^1}\left( {a;U - \overline {{\theta _a}} ,V} \right)}\\ {{F^2}\left( {a;U - \overline {{\theta _a}} ,V} \right)} \end{array}} \right) = \left( \begin{array}{l} 0\\ 0 \end{array} \right). $

这里, 偏导数为($\overline {{\theta _a}} $, 0) 处的导数值, Fi(U-$\overline {{\theta _a}} $, V) 满足Fi(0, 0)=F(U, V)i (0, 0)=0, i=1, 2.

同时对(U, V) 求导, 得

$ \left( {\begin{array}{*{20}{c}} {{u_U}}&{{u_V}}\\ {{\upsilon _U}}&{{\upsilon _V}} \end{array}} \right)\left| {_{\left( {{\theta _a},0} \right)}} \right. = \frac{1}{{\left( {1 + 2{m_1}{\theta _a}} \right)\left( {1 + {m_4}{\theta _a}} \right)}}\left( {\begin{array}{*{20}{c}} {1 + {m_4}{\theta _a}}&{ - {m_2}{\theta _a}}\\ 0&{1 + 2{m_1}{\theta _a}} \end{array}} \right). $

U=U-$\overline {{\theta _a}} $, 则有

$ T\left( {a;\bar U,V} \right) = \left( \begin{array}{l} \Delta \bar U + \frac{{\left( {a - 2{\theta _a}} \right)}}{{1 + 2{m_1}{\theta _a}}}\bar U - \frac{{\left( {a{m_2} + b + a\alpha {m_2}{\theta _a} - 2{m_2}{\theta _a} + 2{m_1}b{\theta _a} - 2\alpha {m_2}\theta _a^2} \right){\theta _a}}}{{\left( {1 + 2{m_1}{\theta _a}} \right)\left( {1 + \alpha {\theta _a}} \right)\left( {1 + {m_4}{\theta _a}} \right)}}V\\ + {F^1}\left( {a;\bar U,V} \right)\\ \Delta V + \frac{{c + \left( {ac + d} \right){\theta _a}}}{{\left( {1 + a{\theta _a}} \right)\left( {1 + {m_4}{\theta _a}} \right)}}V + {F^2}\left( {a;\bar U,V} \right) \end{array} \right) = 0, $

显然T(a; 0, 0)=0.记T(a; U, V) 关于(U, V) 在(a*; 0, 0) 处的Frechlet导数是L(a*; 0, 0).经计算, L(a*; 0, 0)·(φ, ψ)=0等价于

$ \left\{ \begin{array}{l} - \Delta \phi - \left( {\frac{{{a^ * } - 2{\theta _{{a^ * }}}}}{{1 + 2{m_1}{\theta _{{a^ * }}}}}} \right)\phi = \\ \;\;\;\;\;\;\; - \frac{{\left( {{a^ * }{m_2} + b + {a^ * }\alpha {m_2}{\theta _{{a^ * }}} - 2{m_2}{\theta _{{a^ * }}} + 2{m_1}b{\theta _{{a^ * }}} - 2\alpha {m_2}{\theta _{{a^ * }}}^2} \right){\theta _{{a^ * }}}}}{{\left( {1 + 2{m_1}{\theta _{{a^ * }}}} \right)\left( {1 + \alpha {\theta _{{a^ * }}}} \right)\left( {1 + {m_4}{\theta _{{a^ * }}}} \right)}}\psi ,\;\;\;x \in \mathit{\Omega ,}\\ - \Delta \psi - \frac{{c + \left( {\alpha c + d} \right){\theta _{{a^ * }}}}}{{\left( {1 + \alpha {\theta _{{a^ * }}}} \right)\left( {1 + {m_4}{\theta _{{a^ * }}}} \right)}}\psi = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,}\\ \phi = \psi = 0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \partial \mathit{\Omega ,} \end{array} \right. $

如果ψ≡0, 那么由算子La*可逆知φ≡0, 矛盾, 所以ψ不恒为零.又${\lambda _1}\left( { - \frac{{c + \left( {c\alpha + d} \right){\theta _a}}}{{(1 + {m_4}{\theta _a})(1 + \alpha {\theta _a})}}} \right) = 0$, 故有

$ \psi = {\psi ^ * },\phi = {\phi ^ * } = {L_{{a^ * }}}^{ - 1}\left( { - \frac{{\left( {{a^ * }{m_2} + b + {a^ * }\alpha {m_2}{\theta _{{a^ * }}} - 2{m_2}{\theta _{{a^ * }}} + 2{m_1}b{\theta _{{a^ * }}} - 2\alpha {m_2}{\theta _{{a^ * }}}^2} \right){\theta _{{a^ * }}}}}{{\left( {1 + 2{m_1}{\theta _{{a^ * }}}} \right)\left( {1 + \alpha {\theta _{{a^ * }}}} \right)\left( {1 + {m_4}{\theta _{{a^ * }}}} \right)}}{\psi ^ * }} \right). $

因此, 算子L(a*; 0, 0) 的核空间N(L(a*; 0, 0))=span{U0}, U0=(φ*, ψ*)T, 其中

$ {\phi ^ * } = {L_{{a^ * }}}^{ - 1}\left( { - \frac{{\left( {{a^ * }{m_2} + b + {a^ * }\alpha {m_2}{\theta _{{a^ * }}} - 2{m_2}{\theta _{{a^ * }}} + 2{m_1}b{\theta _{{a^ * }}} - 2\alpha {m_2}{\theta _{{a^ * }}}^2} \right){\theta _{{a^ * }}}}}{{\left( {1 + 2{m_1}{\theta _{{a^ * }}}} \right)\left( {1 + \alpha {\theta _{{a^ * }}}} \right)\left( {1 + {m_4}{\theta _{{a^ * }}}} \right)}}{\psi ^ * }} \right). $

又令L*(a*; 0, 0) 为L(a*; 0, 0) 的自伴算子, 类似可得

$ N\left( {{L^ * }\left( {{a^ * };0,0} \right)} \right) = {\rm{span}}\left\{ {{U^ * }} \right\},{U^ * } = {\left( {0,{\psi ^ * }} \right)^{\rm{T}}}. $

由Fredholm选择公理知

$ {\rm{Range}}\left( {L\left( {{a^ * };0,0} \right)} \right) = \left\{ {\left( {\phi ,\psi } \right) \in X:\int_\mathit{\Omega } {\psi {\psi ^ * }{\rm{d}}x = 0} } \right\}, $

因此可得dimN(L(a*; 0, 0))=1, codimR(L(a*; 0, 0))=1.

L1(a*; 0, 0)=$D_{a\left( {\bar U,V} \right)}^2$ T(a*; 0, 0), 下面采用反证法证明

$ {L_1}\left( {{a^ * };0,0} \right) \cdot \left( {{\phi ^ * },{\psi ^ * }} \right) \notin R\left( {L\left( {{a^ * };0,0} \right)} \right). $

假设∃(h, k)∈X, 使得L1(a*; 0, 0)·(φ*, ψ*)=L(a*; 0, 0)·(h, k).经计算得

$ {L_1}\left( {{a^ * };0,0} \right) \cdot \left( {{\phi ^ * },{\psi ^ * }} \right) = \left( \begin{array}{l} - \left[ {{{\left( {\frac{{\left( {a{m_2} + b + a\alpha {m_2}{\theta _a} - 2{m_2}{\theta _a} + 2{m_1}b{\theta _a} - 2\alpha {m_2}\theta _a^2} \right){\theta _a}}}{{\left( {1 + 2{m_1}{\theta _a}} \right)\left( {1 + \alpha {\theta _a}} \right)\left( {1 + {m_4}{\theta _a}} \right)}}} \right)}_{{\theta _a}}}\frac{{\partial {\theta _a}}}{{\partial a}}{\psi ^ * }} \right]\left| {_{a = {a^ * }}} \right. + \\ \;\;\;\;\;\left[ {{{\left( {\frac{{a - 2{\theta _a}}}{{1 + 2{m_1}{\theta _a}}}} \right)}_{{\theta _a}}}\frac{{\partial {\theta _a}}}{{\partial a}}{\phi ^ * }} \right]\left| {_{a = {a^ * }}} \right.\\ \left[ {\frac{{c{m_4} - d + 2c{m_4}\alpha {\theta _a} + \left( {c\alpha + d} \right)\alpha {m_4}\theta _a^2}}{{{{\left( {1 + {m_4}{\theta _a}} \right)}^2}{{\left( {1 + \alpha {\theta _a}} \right)}^2}}}\frac{{\partial {\theta _a}}}{{\partial a}}} \right]\left| {_{a = {a^ * }}} \right.{\psi ^ * } \end{array} \right). $

那么有

$ - \Delta k - \frac{{c + \left( {\alpha c + d} \right){\theta _{{a^ * }}}}}{{\left( {1 + \alpha {\theta _{{a^ * }}}} \right)\left( {1 + {m_4}{\theta _{{a^ * }}}} \right)}}k = \left[ {\frac{{c{m_4} - d + 2c{m_4}\alpha {\theta _a} + \left( {c\alpha + d} \right)\alpha {m_4}\theta _a^2}}{{{{\left( {1 + {m_4}{\theta _a}} \right)}^2}{{\left( {1 + \alpha {\theta _a}} \right)}^2}}}\frac{{\partial {\theta _a}}}{{\partial a}}} \right]\left| {_{a = {a^ * }}} \right.{\psi ^ * }. $

两边同时乘以ψ*, 分部积分得

$ \int_\mathit{\Omega } {\left[ {\frac{{c{m_4} - d + 2c{m_4}\alpha {\theta _a} + \left( {c\alpha + d} \right)\alpha {m_4}\theta _a^2}}{{{{\left( {1 + {m_4}{\theta _a}} \right)}^2}{{\left( {1 + \alpha {\theta _a}} \right)}^2}}}\frac{{\partial {\theta _a}}}{{\partial a}}} \right]} \left| {_{a = {a^ * }}} \right.{\psi ^{ * 2}}{\rm{d}}x = 0, $

由于cm4-d > 0, 且θa关于a严格单调递增, 则上式左端大于0, 矛盾.

由Crandall-Rabinowitz局部分歧定理知, 存在充分小的δ > 0及C1连续曲线(a(s):Φ1(s), Ψ1(s)):(-δ, δ)→R×X满足a(0)=a*, Φ1(0)=0, Ψ1(0)=0, Φ1(s), Ψ1(s)∈Z使得(a(s):U(s), V(s))=(a(s); s(φ*+Φ1(s)), s(ψ*+Ψ1(s))) 是T(a(s):U(s), V(s)) 的零点, 其中X=ZN(L(a*; 0, 0)), 由于U=U-$\overline {{\theta _a}} $, 因此可得到发自(a*; $\overline {{\theta _{a*}}} $, 0) 的局部分歧正解Γ*.

同理可得到发自半平凡分支(a*; 0, $\overline {{\theta _c}} $) 的局部分歧正解.

定理4  设a > λ1, c+ $\frac{d}{\alpha }$ > λ1 > b, 则(a*; 0, $\overline {{\theta _c}} $)∈X×R+为问题(5) 的分歧点, 且(a*; 0, $\overline {{\theta _c}} $) 的领域内存在正解

$ {\mathit{\Gamma }_ * } = \left\{ {\left( {a\left( s \right);s\left( {{\phi _ * } + {\mathit{\Phi }_2}\left( s \right)} \right),\overline {{\theta _c}} + s\left( {{\psi ^ * } + {\mathit{\Psi }_2}\left( s \right)} \right)} \right):0 < s < \delta } \right\}. $

a*${\lambda _1}\left( { - \frac{{a + \left( {\alpha \beta - b} \right){\theta _c}}}{{(1 + \beta {\theta _c})(1 + {m_2}{\theta _c})}}} \right) = 0$唯一确定, φ* > 0满足-Δφ*-${ - \frac{{a + \left( {\alpha \beta - b} \right){\theta _c}}}{{(1 + \beta {\theta _c})(1 + {m_2}{\theta _c})}}}$φ*=0, xΩ, φ*=0, x∂Ω, ∫Ωφ*2dx=1, ψ*C01 (Ω), δ > 0充分小.这里(Φ2(s), Ψ2(s); a(s)) 是连续函数, 满足a(0)=a*, Φ2(0)=0, Ψ2(0)=0, ∫Ωψ2φ*dx=0, 且

$ {\psi ^ * } = L_c^{ - 1}\left[ {\frac{{\left( {d - c{m_4}} \right){\theta _c} + \left( {2{m_3}d - c{m_4}\beta + 2{m_4}} \right)\theta _c^2 + 2{m_4}\beta \theta _c^3}}{{\left( {1 + \beta {\theta _c}} \right)\left( {1 + {m_2}{\theta _c}} \right)\left( {1 + 2{m_3}{\theta _c}} \right)}}{\phi _ * }} \right]. $
参考文献
[1] 周冬梅, 李艳玲. 一类捕食模型正常数平衡态解的稳定性及分歧[J]. 科学技术与工程, 2010, 10(23): 5615-5619
ZHOU Dongmei, LI Yanling. Stability and bifurcation of positive constant steady-state solution for predator-prey model[J]. Science Technology and Engineering, 2010, 10(23): 5615-5619
[2] 李海侠, 李艳玲. 一类捕食模型正平衡解的整体分歧[J]. 西北师范大学学报:自然科学版, 2006, 42(2): 8-12
LI Haixia, LI Yanling. Bifurcation of positive steady-state solutions for a king of predator-prey model[J]. Journal of Northwest Normal University:Natural Science, 2006, 42(2): 8-12
[3] 王妮娅, 李艳玲. 一类带收获率的的捕食模型的全局分歧和稳定性[J]. 安徽师范大学学报:自然科学版, 2015, 38(1): 25-30
WANG Niya, LI Yanling. Global bifurcation and stability of a class of predator-prey models with prey harvesting[J]. Journal of Anhui University:Natural Science Edition, 2015, 38(1): 25-30
[4] KUTO K, YAMADA Y. Multiple coexistence states for a prey-predator system with cross-diffusion[J]. J Differential Equations, 2004, 197(2): 315-348 DOI:10.1016/j.jde.2003.08.003
[5] 张晓晶, 容跃堂, 何堤, 等. 一类带有交叉扩散的捕食-食饵模型的分歧性[J]. 纺织高校基础科学学报, 2014, 27(3): 322-326
ZHANG Xiaojing, RONG Yuetang, HE Di. Bifurcation for a prey-predator model with cross-diffusion[J]. Basic Sciences Journal of Textile Universities, 2014, 27(3): 322-326
[6] DUBEY B, DAS B, HASSAIN J. A prey-predator interaction model with self and cross-diffusion[J]. Ecol Modelling, 2002, 141: 67-76
[7] ZHANG Cunhua, YAN Xiangping. Positive solutions bifurcating from zero solution in a Lotka-Volterra competitive system with cross-diffusion effects[J]. Appl Math J China Univ, 2011, 26(3): 342-352 DOI:10.1007/s11766-011-2737-z
[8] 冯孝周, 吴建华. 具有饱和与竞争项的捕食系统的全局分歧及稳定性[J]. 系统科学与数学, 2010, 30(7): 979-989
FENG Xiaozhou, WU Jianhua. Global bifurcation and stability for predator-prey model with predator saturation and competition[J]. Journal of System Science and Mathematical Sciences, 2010, 30(7): 979-989
[9] 何堤, 容跃堂, 张晓晶. 一类具有交叉扩散的捕食-食饵模型的分歧[J]. 纺织高校基础科学学报, 2015, 28(4): 426-430
HE Di, RONG Yuetang, ZHANG Xiaojing. Bifurcation for a prey-predator model with cross-diffusion[J]. Basic Sciences Journal of Textile Universities, 2015, 28(4): 426-430
[10] BAZYKIN A D. Nonlinear dynamics of interacting population[M]. Singapore: World Scientific, 1998.
[11] 叶其孝, 李正元, 王明新. 反应扩散方程引论[M]. 北京: 科学出版社, 2011: 40-56.
YE Qixiao, LI Zhengyuan, WANG Mingxin. Introduction of reaction-diffusion equations[M]. Beijing: Science Press, 2011: 40-56.
[12] 何堤, 容跃堂, 王晓丽, 等. 一类具有交叉扩散的捕食-食饵模型的局部分歧[J]. 西安工业大学学报, 2015, 35(11): 872-876
HE Di, RONG Yuetang, WANG Xiaoli, et al. Local bifurcation for a prey-predator model with cross-diffusion[J]. Journal of Xi'an Technological University, 2015, 35(11): 872-876
[13] 容跃堂, 何堤, 张晓晶. 带交叉扩散项的Holling Ⅳ捕食-食饵模型的全局分歧[J]. 纺织高校基础科学学报, 2015, 26(3): 287-293
RONG Yuetang, HE Di, ZHANG Xiaojing. The global bifurcation for a prey-predator model with cross-diffusion and Holling Ⅳ[J]. Basic Sciences Journal of Textile Universities, 2015, 26(3): 287-293
[14] 马晓丽, 冯孝周. 一类具有交叉扩散的捕食模型的正解的存在性[J]. 安徽大学学报:自然科学版, 2011, 35(5): 26-31
MA Xiaoli, FENG Xiaozhou. The existence of positive solutions for a predator-prey model with cross-diffusion[J]. Journal of Anhui University:Natural Science Edition, 2011, 35(5): 26-31
[15] 马晓丽. 一类具有交叉扩散的捕食模型的整体分歧[J]. 西安工业大学学报, 2010, 30(5): 506-510
MA Xiaoli. Global bifurcation for a predator-prey model with cross-diffusion[J]. Journal of Xi'an Technological University, 2010, 30(5): 506-510
[16] 戴婉仪, 付一平. 一类交叉扩散系统定态解的分歧与稳定性[J]. 华南理工大学大学报:自然科学版, 2005, 33(2): 99-102
DAI Wanyi, FU Yiping. Bifurcation and stability of the steady-state solutions to a system with cross-diffusion effect[J]. Journal of South China University of Technology:Natural Science Edition, 2005, 33(2): 99-102
[17] 柴俊平, 李艳玲. 带有交叉扩散项的捕食-食饵模型的全局分歧[J]. 纺织高校基础科学学报, 2011, 24(4): 490-494
CHAI Junping, LI Yaning. Global bifurcation of a class of predator-prey models with cross-diffusion effect[J]. Basic Sciences Journal of Textile Universities, 2011, 24(4): 490-494
[18] WU J H. Global bifurcation of coexistence states for the competition model in the chemostat[J]. Nonlinear Analysis, 2000, 39(7): 817-835 DOI:10.1016/S0362-546X(98)00250-8
[19] CRANDALL M G, RABINOWITZ P H. Bifurcation from simple eigenvalues[J]. J Functional Analysis, 1971, 8(2): 321-340 DOI:10.1016/0022-1236(71)90015-2
西安工程大学、中国纺织服装教育学会主办
0

文章信息

容跃堂, 董苗娜, 何堤, 等.
RONG Yuetang, DONG Miaona, HE Di, et al.
一类具有交叉扩散项的捕食-食饵模型的局部分歧
The local bifurcation for a kind of prey-predator model with cross-diffusion
纺织高校基础科学学报, 2016, 29(4): 443-449
Basic Sciences Journal of Textile Universities, 2016, 29(4): 443-449.

文章历史

收稿日期: 2016-04-08

相关文章

工作空间