M-矩阵性质的注记
张瑞霞, 任芳国     
陕西师范大学 数学与信息科学学院, 陕西 西安 710062
摘要: 首先利用M-矩阵的基本性质,讨论了M-矩阵乘积及凸组合特性,获得关于M-矩阵乘积及凸组合的相关结论;随后通过比较矩阵及非负矩阵的性质,探讨了矩阵的逆及行列式性质,推导出了M-矩阵的不等式关系.
关键词M-矩阵     非负矩阵     比较矩阵     行严格对角占优阵    
Notes on the properties of M-matrices
ZHANG Ruixia, REN Fangguo     
School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, China
Abstract: The products and convex combination of M-matrices are discussed on the base of M-matrix basic properties, to some conclusion and some properties in these special operations are obtained. The inverse and determinant of matrix are investigated by using the characterization of comparison matrix and nonnegetive matrix, some inequality relationship of M-matrix are presented.
Key words: M-matrix     nonnegative matrix     comparison matrix     strictly row diagonally dominant matrix    
1 引言及预备知识

M-矩阵是一类重要的特殊矩阵, 它在经济学、运筹学等领域有着广泛的应用.M-矩阵是由Ostrowski在1937年首次提出的, 作为矩阵理论的一个研究分支和方法, 关于M-矩阵的研究一直备受关注[1-3].文献[4-8]讨论了M-矩阵的性质,得出了一些关于M-矩阵的不等式,文献[9-13]讨论了逆M-矩阵的不等式及其相关不等式, 文献[14-16]研究了非负矩阵和M-矩阵之间的关系.文献[17-18]研究了M-矩阵以及逆M-矩阵的主子式的问题.在此基础上, 本文主要讨论M-矩阵的乘法性质及凸组合性质, 得出关于M-矩阵的一些结果.

为了叙述方便, 对符号进行如下约定:Mn(R) 表示实数域R上的所有n×n阶矩阵的集合; AT表示矩阵A的转置, |A|表示n阶方阵(|aij|), ρ(A) 表示矩阵A的谱半径, 其中A=(aij)∈Mn(R); 设A=(aij)∈Mn(R), 如果aij≥0, 则称A为非负矩阵, 记作A≥0;设A=(aij)n, B=(bij)nMn(R), 如果B-A≥0, 称B控制A, 记作AB.其他未加说明的符号参见文献[1].

下面是与本论文有关的几个定义及引理.

定义1[1]  设Zn={A=(aij)∈Mn(R)|aij≤0, ij, i, j=1, 2, …, n}, 称Zn中的矩阵AZ-矩阵.

定义2[1]  若AZn, 如果A是正稳定矩阵, 称AM-矩阵.

定义3[1]  设A=(aij)nMn(R), 称n阶方阵(mij)nA的比较矩阵, 记作M(A), 其中mij$\left\{ \begin{array}{l} |{a_{ij}}|,j = i,\\ - |{a_{ij}}|,j \ne i. \end{array} \right.$

定义4[1]  设AMn(R), 如果A的比较矩阵M(A) 是M-矩阵, 称AH-矩阵.

引理1[1]  若AZn, 则下列条件互相等价:

(1) AM-矩阵;

(2) A=αI-P, P≥0, α > ρ(P);

(3) A是非奇异的, 且A-1≥0;

(4) 存在正对角矩阵D, 使得DA+ATD正定;

(5) A的主对角元素是正的且存在正对角矩阵D, 使得AD是行严格对角占优阵;

(6) 存在正向量x > 0, 使得Ax > 0;

(7) ATM-矩阵.

引理2[1]  A, BZn是给定的矩阵, 假设A=[aij]是M-矩阵, 且BA.则

(1) BM-矩阵;

(2) A-1B-1≥0;

(3) detB≥detA > 0.

引理3[2]  设A=(aij)n, B=(bij)nMn(R) 且B是非负矩阵, 如果AB, 则有ρ(A)≤ρ(B).

2 主要结果

定理1  设AMnM-矩阵, DMn(R) 是正对角矩阵, 则DAAD也是M-矩阵.

证明  (1) 首先证DAM-矩阵.由于AMnM-矩阵且D是正对角矩阵, 则DAZn.由于AM-矩阵, 则由引理1中(4) 知, 存在一个正对角矩阵E, 使得EA+ATE正定.此外对于正对角矩阵D, 显然ED-1也是正对角矩阵, 且有(ED-1)(DA)+(DA)T(ED-1)=EA+ATE正定, 于是由引理1中(4) 可得, DAM-矩阵.(2) 其次证AD是M-矩阵.设AMnM-矩阵, 由引理1中(7) 可知, AT也是M-矩阵.由已证得(1) 可知DATM-矩阵, 因此由引理1中(7) 得, (DAT)T=ADT=ADM-矩阵.综上可知, DAAD都是M-矩阵.

定理2  设A, BMnM-矩阵, 则

(1) ABM-矩阵当且仅当ABZn;

(2) 如果A, B是2阶方阵, 则ABM-矩阵.

证明 (1) 若ABM-矩阵, 显然有ABZn; 若ABZn, 因为A, BMnM-矩阵, 由引理1中(3) 得AB都是非奇异矩阵, 且A-1≥0, B-1≥0.因此, (AB)-1=B-1A-1≥0, 于是由引理1(3) 知, ABM-矩阵.

(2) 设A=$\left( {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}\\ {{a_{21}}}&{{a_{22}}} \end{array}} \right)$, B=$\left( {\begin{array}{*{20}{c}} {{b_{11}}}&{{b_{12}}}\\ {{b_{21}}}&{{b_{22}}} \end{array}} \right)$M-矩阵, 则AB=$\left( {\begin{array}{*{20}{c}} {{a_{11}}{b_{11}} + {a_{12}}{b_{21}}}&{{a_{11}}{b_{12}} + {a_{12}}{b_{22}}}\\ {{a_{21}}{b_{11}} + {a_{22}}{b_{22}}}&{{a_{21}}{b_{12}} + {a_{22}}{b_{22}}} \end{array}} \right)$, 由于A, BM-矩阵, 因此A, BZn, 且AB的主对角线元素都是正数.因此有a11 > 0, a22 > 0, b11 > 0, b22 > 0, a12≤0, a21≤0, b21≤0, b12≤0.所以a11b12+a12b22≤0, a21b11+a22b21≤0, ABZn, 由已证得(1) 可知ABM-矩阵.

 一般地, 两个M-矩阵的乘积不一定是M-矩阵, 如

$ \mathit{\boldsymbol{A = }}\left[ {\begin{array}{*{20}{c}} 1&{ - 1}&0\\ { - 1}&3&{ - 2}\\ 0&{ - 1}&4 \end{array}} \right],\mathit{\boldsymbol{B = }}\left( {\begin{array}{*{20}{c}} 1&{ - \frac{1}{2}}&0\\ { - \frac{1}{2}}&1&{ - \frac{1}{3}}\\ 0&{ - \frac{1}{3}}&1 \end{array}} \right),aaa\mathit{\boldsymbol{AB = }}\left( {\begin{array}{*{20}{c}} {\frac{3}{2}}&{ - \frac{3}{2}}&{\frac{1}{3}}\\ { - \frac{5}{2}}&{\frac{{25}}{6}}&{ - 3}\\ {\frac{1}{2}}&{ - \frac{1}{3}}&{\frac{{13}}{3}} \end{array}} \right) \notin {Z_n}. $

定理3  设A, BMn(R) 是M-矩阵, α∈[0, 1], 则

(1) 若αA+(1-α)BM-矩阵, 则B-1A没有负的实特征值;

(2) 如果B-1AM-矩阵, 则AB的凸组合是M-矩阵;

(3) B-1AM-矩阵当且仅当B-1AZn.

证明  (1) 假设B-1A有负的实特征值-λ, 其中λ > 0, 即

$ \det \left( { - \lambda \mathit{\boldsymbol{I}} - {\mathit{\boldsymbol{B}}^{ - 1}}\mathit{\boldsymbol{A}}} \right) = {\left( { - 1} \right)^n}\det \left( {\lambda \mathit{\boldsymbol{I + }}{\mathit{\boldsymbol{B}}^{ - 1}}\mathit{\boldsymbol{A}}} \right) = 0, $

α=$\frac{1}{{\lambda + 1}}$, 1-α=$\frac{\lambda }{{\lambda + 1}}$, 则

det (αA+(1-α)B)=det (B(αB-1A+(1-α)I))=detBdet (αB-1A+(1-α)I)=detBdet $\left( {\frac{\lambda }{{\lambda + 1}}I + \frac{1}{{\lambda + 1}}{\boldsymbol{B}^{ - 1}}\boldsymbol{A}} \right) = {\left( {\frac{1}{{\lambda + 1}}} \right)^n}$det (λI+B-1A)=0,

这与αA+(1-α)BM-矩阵矛盾, 因此B-1A没有负的实特征值.

(2) 因为αA+(1-α)B=B(αB-1A+(1-α)I), 且A, B都是M-矩阵, 所以AZn, BZn, αA+(1-α)BZn.又B-1AM-矩阵, 所以αB-1A+(1-α)I, α∈[0, 1]是M-矩阵.又BM-矩阵, αA+(1-α)B=B(αB-1A+(1-α)I)∈Zn, 由定理2知, αA+(1-α)BM-矩阵.

(3) 必要性.设B-1AM-矩阵, 显然有B-1AZn.

充分性.由于AM-矩阵, 由引理1中(6) 知, 存在正向量x > 0, 使得Ax > 0.再由BM-矩阵, 知B-1≥0, 显然B-1的每一行至少有一个是正数, 所以B-1Ax > 0, 故由引理1中(6) 知, B-1AM-矩阵.

定理4  设A, BZn, 且AM-矩阵, 且BA, 则

(1) B-1AIAB-1I,

(2) B-1AAB-1都是M-矩阵,

(3) 对于所有的α∈[0, 1], αA+(1-α)BM-矩阵,

(4) ∀α∈[0, 1], αC+(1-α)IM-矩阵, 其中C=B-1AC=AB-1,

(5) (αA+(1-α)B)-1αA-1+(1-α)B-1, ∀α∈[0, 1].

证明  (1) 由引理2(1) 知, BM-矩阵, 则B-1≥0, 于是由BA知, B-1(B-A)≥0且(B-A)B-1≥0, 因而有B-1AI, 且AB-1I.

(2) 由已证得(1) 知B-1AZn, AB-1Zn, 此外由于BA, 即B-A≥0, 以及AM-矩阵知, (B-A)A-1≥0且A-1(B-A)≥0, 即A-1BI, BA-1I, 因而A-1B, BA-1都是非负矩阵, 再由于(B-1A)-1=A-1B, (AB-1)-1=BA-1及由引理1中(3) 知, BA-1AB-1都是M-矩阵.

(3) 因为AZn, BZn, 所以∀α∈[0, 1], αA+(1-α)BZn, 又因为AB, 于是有AαA+(1-α)BB, 由引理2中(1) 知, αA+(1-α)BM-矩阵.

(4) 因为CM-矩阵, 所以∀α∈[0, 1], αC+(1-α)IZn且有αC+(1-α)IαC.当α=0时, 显然αC+(1-α)I=IM-矩阵, 当α≠0时, 由引理2(1) 知, αC+(1-α)IM-矩阵.

(5) 令G=AB-1, ∀α∈[0, 1], 由于

$ \begin{array}{l} \alpha {\mathit{\boldsymbol{A}}^{ - 1}} + \left( {1 - \alpha } \right){\mathit{\boldsymbol{B}}^{ - 1}} - {\left( {\alpha \mathit{\boldsymbol{A + }}\left( {1 - \alpha } \right)\mathit{\boldsymbol{B}}} \right)^{ - 1}} = \\ \alpha {\mathit{\boldsymbol{A}}^{ - 1}} + \left( {1 - \alpha } \right){\mathit{\boldsymbol{B}}^{ - 1}} - {\mathit{\boldsymbol{B}}^{ - 1}}{\left( {\alpha \mathit{\boldsymbol{A}}{\mathit{\boldsymbol{B}}^{ - 1}} + \left( {1 - \alpha } \right)\mathit{\boldsymbol{I}}} \right)^{ - 1}} = \\ {\mathit{\boldsymbol{B}}^{ - 1}}\left( {\alpha \mathit{\boldsymbol{B}}{\mathit{\boldsymbol{A}}^{ - 1}} + \left( {1 - \alpha } \right)\mathit{\boldsymbol{I}}} \right) - {\mathit{\boldsymbol{B}}^{ - 1}}{\left( {\alpha \mathit{\boldsymbol{G + }}\left( {1 - \alpha } \right)\mathit{\boldsymbol{I}}} \right)^{ - 1}} = \\ {\mathit{\boldsymbol{B}}^{ - 1}}\left[ {\alpha {\mathit{\boldsymbol{G}}^{ - 1}} + \left( {1 - \alpha } \right)\mathit{\boldsymbol{I}} - {{\left( {\alpha \mathit{\boldsymbol{G + }}\left( {1 - \alpha } \right)\mathit{\boldsymbol{I}}} \right)}^{ - 1}}} \right] = \\ {\mathit{\boldsymbol{B}}^{ - 1}}\left[ {{\mathit{\boldsymbol{G}}^{ - 1}}\left( {\alpha \mathit{\boldsymbol{I + }}\left( {1 - \alpha } \right)\mathit{\boldsymbol{G}}} \right) - {{\left( {a\mathit{\boldsymbol{C + }}\left( {1 - \alpha } \right)\mathit{\boldsymbol{I}}} \right)}^{ - 1}}} \right] = \\ {\mathit{\boldsymbol{B}}^{ - 1}}\left[ {{\mathit{\boldsymbol{G}}^{ - 1}}\left( {\alpha \mathit{\boldsymbol{I + }}\left( {1 - \alpha } \right)\mathit{\boldsymbol{G}}} \right)\left( {\alpha \mathit{\boldsymbol{G + }}\left( {1 - \alpha } \right)\mathit{\boldsymbol{I}}} \right) - \mathit{\boldsymbol{I}}} \right]{\left( {\alpha \mathit{\boldsymbol{G + }}\left( {1 - \alpha } \right)\mathit{\boldsymbol{I}}} \right)^{ - 1}} = \\ {\mathit{\boldsymbol{B}}^{ - 1}}\left[ {{\mathit{\boldsymbol{G}}^{ - 1}}\left( {{\alpha ^2}\mathit{\boldsymbol{G + }}\alpha \left( {1 - \alpha } \right)\mathit{\boldsymbol{I + }}\alpha \left( {1 - \alpha } \right){\mathit{\boldsymbol{G}}^2} + {{\left( {1 - \alpha } \right)}^2}\mathit{\boldsymbol{G}}} \right) - \mathit{\boldsymbol{I}}} \right]{\left( {\alpha \mathit{\boldsymbol{G + }}\left( {1 - \alpha } \right)\mathit{\boldsymbol{I}}} \right)^{ - 1}} = \\ {\mathit{\boldsymbol{B}}^{ - 1}}\left[ {{\alpha ^2}\mathit{\boldsymbol{I + }}\alpha \left( {1 - \alpha } \right){\mathit{\boldsymbol{G}}^{ - 1}} + \alpha \left( {1 - \alpha } \right)\mathit{\boldsymbol{G}} + {{\left( {1 - \alpha } \right)}^2}\mathit{\boldsymbol{I}} - \mathit{\boldsymbol{I}}} \right]{\left( {\alpha \mathit{\boldsymbol{G + }}\left( {1 - \alpha } \right)\mathit{\boldsymbol{I}}} \right)^{ - 1}} = \\ {\mathit{\boldsymbol{B}}^{ - 1}}\left[ {\alpha \left( {1 - \alpha } \right)\mathit{\boldsymbol{G + }}\alpha \left( {1 - \alpha } \right){\mathit{\boldsymbol{G}}^{ - 1}} + 2\alpha \left( {1 - \alpha } \right)\mathit{\boldsymbol{I}}} \right]{\left( {\alpha \mathit{\boldsymbol{G + }}\left( {1 - \alpha } \right)\mathit{\boldsymbol{I}}} \right)^{ - 1}} = \\ \alpha \left( {1 - \alpha } \right){\mathit{\boldsymbol{B}}^{ - 1}}{\mathit{\boldsymbol{G}}^{ - 1}}{\left( {\mathit{\boldsymbol{I}} - \mathit{\boldsymbol{G}}} \right)^2}{\left( {\alpha \mathit{\boldsymbol{G + }}\left( {1 - \alpha } \right)\mathit{\boldsymbol{I}}} \right)^{ - 1}}, \end{array} $

B, G, αG+(1-α)I都是M-矩阵且I-G≥0,可知B-1≥0, C-1≥0, (αC+(1-α)I)-1≥0, 于是就有αA-1+(1-α)B-1-(αA+(1-α)B)-1≥0, 因此(αA+(1-α)B)-1αA-1+(1-α)B-1.

 两个M-矩阵的和不一定是M-矩阵.A=$\left( {\begin{array}{*{20}{c}} {\frac{1}{2}}&{ - 1}\\ 0 &{\frac{1}{2}} \end{array}} \right)$, B=$\left( {\begin{array}{*{20}{c}} {\frac{1}{2}}&0\\ { - 1}&{\frac{1}{2}} \end{array}} \right)$M-矩阵, 由A+B=$\left( {\begin{array}{*{20}{c}} 1 < { - 1}\\ { - 1}< 1 \end{array}} \right)$且det (A+B)=0知, A+B不是M-矩阵.

定理5  设A, B=[bij]∈Mn(R), 如果AM-矩阵, 且M(B)≥A, 则有

(1) BH-矩阵;

(2) B与|B|都是可逆矩阵;

(3) 0≤|B-1|≤A-1;

(4) 0 < detA≤|detB|.

证明  (1) 由于M(B)∈Zn, 又M(B)≥A, 则由引理2中(1) 知, M(B) 是M-矩阵, 因此BH-矩阵.

(2) 因为M(B) 是矩阵M-矩阵, 由引理1中(5), 存在正对角矩阵D使得M(B)D是行严格对角占优.由于

$ \begin{array}{l} M\left( \mathit{\boldsymbol{B}} \right)\mathit{\boldsymbol{D = }}\left( {\begin{array}{*{20}{c}} {\left| {{b_{11}}} \right|}&{ - \left| {{b_{12}}} \right|}& \cdots &{ - \left| {{b_{1n}}} \right|}\\ { - \left| {{b_{21}}} \right|}&{ - \left| {{b_{22}}} \right|}& \cdots &{ - \left| {{b_{2n}}} \right|}\\ \cdots & \cdots & \ddots & \cdots \\ { - \left| {{b_{n1}}} \right|}&{ - \left| {{b_{n2}}} \right|}& \cdots &{\left| {{b_{nn}}} \right|} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{d_1}}&{}&{}&{}\\ {}&{{d_2}}&{}&{}\\ {}&{}& \ddots &{}\\ {}&{}&{}&{{d_n}} \end{array}} \right) = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {\begin{array}{*{20}{c}} {\left| {{b_{11}}} \right|{d_1}}&{ - \left| {{b_{12}}} \right|{d_2}}& \cdots &{ - \left| {{b_{1n}}} \right|{d_n}}\\ { - \left| {{b_{21}}} \right|{d_1}}&{ - \left| {{b_{22}}} \right|{d_2}}& \cdots &{ - \left| {{b_{2n}}} \right|{d_n}}\\ \cdots & \cdots & \ddots & \cdots \\ { - \left| {{b_{n1}}} \right|{d_1}}&{ - \left| {{b_{n2}}} \right|{d_2}}& \cdots &{\left| {{b_{nn}}} \right|{d_n}} \end{array}} \right), \end{array} $

则有|bii|di > $\sum\limits_{j = 1,j \ne i}^n {\left| {{b_{ij}}} \right|} $dj, 其中i=1, …, n.又

$ \begin{array}{l} \mathit{\boldsymbol{BD = }}\left( {\begin{array}{*{20}{c}} {{b_{11}}}&{{b_{12}}}& \cdots &{{b_{1n}}}\\ {{b_{21}}}&{{b_{22}}}& \cdots &{{b_{2n}}}\\ \cdots & \cdots & \ddots & \cdots \\ {{b_{n1}}}&{{b_{n2}}}& \cdots &{{b_{nn}}} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{d_1}}&{}&{}&{}\\ {}&{{d_2}}&{}&{}\\ {}&{}& \ddots &{}\\ {}&{}&{}&{{d_n}} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{b_{11}}{d_1}}&{{b_{12}}{d_2}}& \cdots &{{b_{1n}}{d_n}}\\ {{b_{21}}{d_1}}&{{b_{22}}{d_2}}& \cdots &{{b_{2n}}{d_n}}\\ \cdots & \cdots & \ddots & \cdots \\ {{b_{n1}}{d_1}}&{{b_{n2}}{d_2}}& \cdots &{{b_{nn}}{d_n}} \end{array}} \right),\\ \left| \mathit{\boldsymbol{B}} \right|\mathit{\boldsymbol{D = }}\left( {\begin{array}{*{20}{c}} {\left| {{b_{11}}} \right|{d_1}}&{\left| {{b_{12}}} \right|{d_2}}& \cdots &{\left| {{b_{1n}}} \right|{d_n}}\\ {\left| {{b_{21}}} \right|{d_1}}&{\left| {{b_{22}}} \right|{d_2}}& \cdots &{\left| {{b_{2n}}} \right|{d_n}}\\ \cdots & \cdots & \ddots & \cdots \\ {\left| {{b_{n1}}} \right|{d_1}}&{ - \left| {{b_{n2}}} \right|{d_2}}& \cdots &{\left| {{b_{nn}}} \right|{d_n}} \end{array}} \right), \end{array} $

所以BD与|B|D都是行严格对角占优, 因而BD与|B|D是可逆矩阵.再由D是可逆阵知, B与|B|都是可逆矩阵.

(3) 取α > $\mathop {\max }\limits_{1 \le i \le n} ${|bii|}, 令P=αI-A.因为AM-矩阵且M(B)≥AP≥0, 又由引理1中(2) 知α > ρ(P), 再构造对角矩阵D=(dij), 其中dii=$\left\{ \begin{array}{l} 1,{b_{ij}} > 0\\ - 1,{b_{ij}} < 0 \end{array} \right.$, 则DB的主对角线元素大于0, 易知|αI-DB|≤P.令R=αI-DB, 即|R|≤P, 由引理3知ρ(R)≤ρ(|R|)≤ρ(P) < α, 因此|(DB)-1|=|α-1(1-α-1R)-1|=$\left| {\sum\limits_{k = 0}^\infty {{\alpha ^{ - k - 1}}} {\boldsymbol{R}^k}} \right| \le \sum\limits_{k = 0}^\infty {{\alpha ^{ - k - 1}}} {\left| \boldsymbol{R} \right|^k} \le \sum\limits_{k = 0}^\infty {{\alpha ^{ - k - 1}}} {\boldsymbol{P}^k} = {\boldsymbol{A}^{ - 1}}$, 再由D的构造知, |(DB)-1|=|B-1|, 故综上可得A-1≥|B-1|≥0.

(4) 对n作数学归纳法证明.当n=1时, 由已证得(3) 知a11-1≥|b11-1|, 因此a11≤|b11|, 即|detB|≥detA.假设n-1时成立, 将AB进行分块, A=$\left( {\begin{array}{*{20}{c}} {{A_{11}}}&{{A_{12}}}\\ {{A_{21}}}&{{A_{nn}}} \end{array}} \right)$, B=$\left( {\begin{array}{*{20}{c}} {{B_{11}}}&{{B_{12}}}\\ {{B_{21}}}&{{B_{nn}}} \end{array}} \right)$, 其中A11, B11Mn-1.由归纳假设知|detB11| > detA11, 再由(3) 知A-1-|B-1|的(n, n) 元素$\frac{{{\rm{det}}{\boldsymbol{A}_{11}}}}{{{\rm{det}}\boldsymbol{A}}} - \frac{{|{\rm{det}}{\boldsymbol{B}_{11}}|}}{{|{\rm{det}}\boldsymbol{B}|}}$≥0, 进而由AM-矩阵及B是可逆矩阵知, detA > 0, |detB| > 0, |detB| > $\frac{{|{\rm{det}}{\boldsymbol{B}_{11}}|}}{{{\rm{det}}{\boldsymbol{A}_{11}}}}$detA > detA > 0.综上得证.

参考文献
[1] HORN R A, JOHNSON C R. Topics in matrix analysis[M]. Cambridge: Cambridge University Press, 1991: 112-133.
[2] HENRY M. Nonnegative matrices[M]. New York: Wiley-Interscience Publication, 1988: 36-39.
[3] BERMAN A, PLEMMONS R J. Nonnegative matrices in the mathematical sciences[M]. New York: Academic Press, 1994: 132-161.
[4] POOLE G, BOULLION T. A Survey on M-matrices[J]. SIAM Review, 1974, 16(4): 419-427 DOI:10.1137/1016079
[5] ANDOT. Inequalities for M-matrices[J]. Linear and Multilinear Algebra, 1980, 67(8): 291-316
[6] 张晓东, 杨尚骏. M-矩阵的行列式不等式[J]. 工程数学学报, 1996, 13(3): 107-111
ZHANG Xiaodong, YANG Shangjun. Inequalities for determinants of M-matrices[J]. Journal of Engineering Mathematics, 1996, 13(3): 107-111
[7] 杜吉佩, 杨尚骏. 可逆M-矩阵两个问题的讨论[J]. 沈阳师范大学学报, 2004, 22(3): 165-168
DU Jipei, YANG Shangjun. Discuss on two questions of inverse M-matrices[J]. Journal of Shenyang Normal University:Natural Science, 2004, 22(3): 165-168
[8] 赵建中, 杨传胜, 周本达. M-矩阵的性质与Hadamard-Fisher不等式的注记[J]. 大学数学, 2008, 24(2): 113-117
ZHAO Jiaozhong, YANG Chuansheng, ZHOU Benda. The properties of M-matrices and notes about M-matrix's Hadamard inequuality[J]. College Mathematics, 2008, 24(2): 113-117
[9] LEWIN M, NEUMANN M. On the inverse M-matrix problem for (0, 1) matrices[J]. Linear Algebra and its Applications, 1980, 30: 41-50 DOI:10.1016/0024-3795(80)90179-2
[10] JOHNSON C R. Inverse M-matrices[J]. Linear Algebra and its Applications, 1982, 47: 195-216 DOI:10.1016/0024-3795(82)90238-5
[11] CHEN Shencan.Inequalities for M-matrices and iverse M-matrices[J].2007, 426(2/3):610-618.
[12] NEUMAN M, NUNG Sing Sze. On the inverse mean first passage matrix problem and the inverse M-matrices problem[J]. Linear Algebra and its Applications, 2011, 434(7): 1620-1630 DOI:10.1016/j.laa.2010.02.019
[13] JOHNSON C R, SMITH R L. Inverse M-matrices Ⅱ[J]. Linear Algebra and its Applications, 2011, 435: 953-983 DOI:10.1016/j.laa.2011.02.016
[14] PENA J M. M-matrices whose inverses are totally positive[J]. Linear Algebra and its Applications, 1995, 221: 189-193 DOI:10.1016/0024-3795(93)00244-T
[15] MARKHAM T L. Nonnegative matrices whose inverse are M-matrices[J]. Proceedings of American Mathematical Society, 1972, 36(2): 326-330
[16] 朱辉华, 刘建州. 非负矩阵是逆M-矩阵的充要条件及其[J]. 湖南理工学院学报, 2009, 22(2): 13-15
ZHU Huihua, LIU Jianzhou. The necessary and sufficient condition of inverse M-matrices[J]. Journal of Hunan Institute of Science and Technology, 2009, 22(2): 13-15
[17] JOHNSON C R, SMITH R L. Almost principal minors of inverse M-matrices[J]. Linear Algebra and its Applications, 2001, 337: 253-265 DOI:10.1016/S0024-3795(01)00352-4
[18] BIERKENS J, RAN A. A singular M-matrix perturbed by a nonnegative rank one matrix has positive principal minors; is it D-stable?[J]. Linear Algebra and its Applications, 2014, 457: 191-208 DOI:10.1016/j.laa.2014.05.022
西安工程大学、中国纺织服装教育学会主办
0

文章信息

张瑞霞, 任芳国.
ZHANG Ruixia, REN Fangguo.
M-矩阵性质的注记
Notes on the properties of M-matrices
纺织高校基础科学学报, 2016, 29(4): 419-423
Basic Sciences Journal of Textile Universities, 2016, 29(4): 419-423.

文章历史

收稿日期: 2016-07-08

相关文章

工作空间